# Graph Abstraction

Reconciling clustering with trajectory inference through a topologically consistent map of single cells

F. Alexander Wolf, Institute of Computational Biology, Helmholtz Munich October 17, 2017 - Single Cell Genomics - Weizmann Institute of Sciences

## 46 cell types of planaria





Plass, Solana, ..., Rajewski, unpublished (2017)

- Which "cell types"/ clusters are connected?
- Which paths do cells take, where do branchings occur?
- Trace gene "dynamics"/ changes along paths?

# 46 cell types of planaria

FR1





Weinreb et al., bioRxiv (2017)







# Need to unify...

... as single-cell data has complicated connected and disconnected topology





'single-cell graph' represents topology at single-cell resolution

#### Plan

Simplify single-cell graph to generate a cell map that represents topology at a coarse-grained, human-interpretable resolution.

### Graph-based visualization

For illustration, model myeloid differentiation...



... and add clusters to the data to model imperfect sampling.

Graph-drawing often conserves topology of single-cell graph.

Weinreb et al., bioRxiv (2017)



### Graph-based coordinates

#### Continuous coordinate: random-walk based distance on graph

Generalize scale-free random-walk based distance measures to disconnected graphs

mean commute time
$$(\iota_1, \iota_2) = 2n_{\text{edges}} \sum_{r=1+n_{\text{comps}}}^{n_{\text{nodes}}} \left(\frac{1}{1-\lambda_i}\right)^2 (v_{r\iota_1} - v_{r\iota_2})^2,$$
  
extends Lovász, Combinatorics (1993)  
 $dpt(\iota_1, \iota_2) = \sum_{r=1+n_{\text{comps}}}^{n_{\text{nodes}}} \left(\frac{\lambda_i}{1-\lambda_i}\right)^2 (v_{r\iota_1} - v_{r\iota_2})^2,$ 

extends Haghverdi et al., Nat. Meth. (2016)



#### Categorical coordinate: cluster index

Optimizing graph modularity is sensitive to changes in topology

Newman, Phys. Rev. E (2004) Blondel *et al.*, J. Stat. Mech. (2008) Levine *et al.*, Cell (2015)



#### Develop statistical test of <u>connectedness of clusters</u>

$$M_{ij} = K_{ij}/n_{\text{edges}} - \theta_i \theta_j$$
$$\mathbf{E}[M_{ij}] = 0$$
$$\operatorname{var}[M_{ij}] = \theta_i \theta_j (1 - \theta_i \theta_j)/n_{\text{edges}}$$



Develop statistical test of <u>connectedness of clusters</u>

$$M_{ij} = K_{ij}/n_{\text{edges}} - \theta_i \theta_j$$
$$\mathbf{E} [M_{ij}] = 0$$
$$\operatorname{var} [M_{ij}] = \theta_i \theta_j (1 - \theta_i \theta_j)/n_{\text{edges}}$$





Develop statistical test of <u>connectedness of clusters</u>

$$M_{ij} = K_{ij}/n_{\text{edges}} - \theta_i \theta_j$$
$$\mathbf{E}[M_{ij}] = 0$$
$$\operatorname{var}[M_{ij}] = \theta_i \theta_j (1 - \theta_i \theta_j)/n_{\text{edges}}$$





Develop statistical test of <u>connectedness of clusters</u>

$$M_{ij} = K_{ij}/n_{\text{edges}} - \theta_i \theta_j$$
$$\mathbf{E}[M_{ij}] = 0$$
$$\operatorname{var}[M_{ij}] = \theta_i \theta_j (1 - \theta_i \theta_j)/n_{\text{edges}}$$





### Abstracted topology is robust



### Graph abstraction: overview



### Consistent continuous gene changes

#### .. across datasets from different labs.



### Learn where data is connected

Partial reconstruction of the PBMC lineage tree.

Only motifs can be recovered as data mostly consists of differentiated cells.

data for 68k cells from Zheng *et al.*, Nat. Comms. (2017) data for 3.6k cells from 10X Genomics



Plass, Solana, ..., Rajewski, unpublished (2017)

### Lineage tree of an adult animal: planaria



- Likely candidate for differentiation tree within abstracted graph
- Key genes during differentiation by following paths in abstracted coordinate system

#### Thanks to

#### Helmholtz Munich, Theis Lab

Sophie Tritschler Lukas Simon Fabian Theis

#### HelmholtzZentrum münchen

Deutsches Forschungszentrum für Gesundheit und Umwelt

#### Thank you for your attention!

#### **Cambridge U, Göttgens Lab** Fiona Hamey

#### MDC Berlin, Rajewski Lab

Mireya Plass Jordi Solana Nikolaus Rajewski



Code and documentation: <a href="https://github.com/theislab/graph\_abstraction">https://github.com/theislab/graph\_abstraction</a> On bioRxiv within the next days



#### Trapnell et al., Nat. Biotech. (2014) Qiu et al., Nat. Meth. (2017) Comparison with Monocle



Reconstructing a simple tree using graph abstraction.







### Comparison with stemID

Grün et al., Nature (2016) Grün et al., Cell Stem Cell (2017)

