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challenges associated with studying the single-cell epigenome, and 
open problems associated with the increasing scale of single-cell 
experiments, the integration of diverse single-cell assays, and the use 
of these data to illuminate the organization of complex tissues.

Addressing technical variation in single-cell RNA-seq
We distinguish three sources of variation in scRNA-seq (Fig. 2, top). 
The first is technical variation, which is due to factors such as differences 
in cell integrity and lysis, RNA capture and cDNA conversion, and 
detection38,39. The second is allele-intrinsic variation, namely stochastic 
factors intrinsic to the molecular mechanisms that control gene 
expression40–42. For example, the bursting statistics of transcriptional 
initiation coupled to variable rates of mRNA degradation can lead to 
fluctuations in transcript levels over time in one cell, and to differences 
between otherwise ‘identical’ cells measured at a single time point. This 

Here we review key questions, progress, and open challenges in 
the development of computational methods in single-cell functional 
genomics, focusing primarily on scRNA-seq (we do not discuss 
single-cell genome analysis, as it was recently reviewed elsewhere37). 
We first distinguish key sources of variation in single cells, and 
experimental and computational strategies to tease them apart and 
to mitigate the effects of technical (unwanted) variation in order 
to explore the biological variation in the data. We highlight key 
current methods that can characterize the diverse factors involved 
in determining cellular identity, including cell type (with cell types 
forming a hierarchical taxonomy), continuous phenotypes, temporal 
progression (on linear, bifurcating, or cyclic trajectories), and spatial 
position in the tissue. We close with areas of substantial opportunity 
and challenges for future research, including emerging methods that 
harness single-cell data to dissect the molecular circuitry, unique 
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Figure 1  Diverse factors combine to create a cell’s unique identity, and computational methods reveal them. (a) A cell participates simultaneously in multiple 
biological contexts. The illustration depicts a particular cell (blue) as it experiences multiple contexts that shape its identity simultaneously (from left to 
right): environmental stimuli, such as nutrient availability or the binding of a signaling molecule to a receptor; a specific state on a developmental trajectory; 
the cell cycle; and a spatial context, which determines its physical environment (e.g., oxygen availability), cellular neighbors, and developmental cues 
(e.g., morphogen gradients). (b) The biological factors affecting the cell combine to create its unique, instantaneous identity, which is captured in the cell’s 
molecular profile. Computational methods dissect the molecular profile and tease apart facets of the cell’s identity, which are akin to ‘basis vectors’ that span 
a space of possible cellular identities. Key examples include (counterclockwise from top): (1) discrete cell types (e.g., cell populations in the retina (A.R. and 
colleagues30)); cell type frequency can vary by multiple orders of magnitude from the most abundant to the rarest subtype; (2) continuous phenotypes (e.g., 
the pro-inflammatory potential of each individual T cell, quantified through a gene expression signature derived from bulk pathogenic T cell profiles (N.Y., 
A.R. and colleagues1)); (3) unidirectional temporal progression (e.g., normal differentiation, such as hematopoiesis); (4) temporal vacillation between cellular 
states (e.g., oscillation through cell cycle; data taken from A.R. and colleagues102); (5) physical location (e.g., a cell’s location during embryo development 
determines its exposure to morphogen gradients. Dividing an organ into discrete spatial bins, combined with independent data on landmark genes, allows 
inference of spatial bins (highlighted) from which single cells had likely originated (figure adapted from A.R. and colleagues95). The scatterplots represent 
single cells (dots) projected onto two dimensions (e.g., first two principal components or using t-SNE).
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single cells (dots) projected onto two dimensions (e.g., first two principal components or using t-SNE).
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Figure 1  Diverse factors combine to create a cell’s unique identity, and computational methods reveal them. (a) A cell participates simultaneously in multiple 
biological contexts. The illustration depicts a particular cell (blue) as it experiences multiple contexts that shape its identity simultaneously (from left to 
right): environmental stimuli, such as nutrient availability or the binding of a signaling molecule to a receptor; a specific state on a developmental trajectory; 
the cell cycle; and a spatial context, which determines its physical environment (e.g., oxygen availability), cellular neighbors, and developmental cues 
(e.g., morphogen gradients). (b) The biological factors affecting the cell combine to create its unique, instantaneous identity, which is captured in the cell’s 
molecular profile. Computational methods dissect the molecular profile and tease apart facets of the cell’s identity, which are akin to ‘basis vectors’ that span 
a space of possible cellular identities. Key examples include (counterclockwise from top): (1) discrete cell types (e.g., cell populations in the retina (A.R. and 
colleagues30)); cell type frequency can vary by multiple orders of magnitude from the most abundant to the rarest subtype; (2) continuous phenotypes (e.g., 
the pro-inflammatory potential of each individual T cell, quantified through a gene expression signature derived from bulk pathogenic T cell profiles (N.Y., 
A.R. and colleagues1)); (3) unidirectional temporal progression (e.g., normal differentiation, such as hematopoiesis); (4) temporal vacillation between cellular 
states (e.g., oscillation through cell cycle; data taken from A.R. and colleagues102); (5) physical location (e.g., a cell’s location during embryo development 
determines its exposure to morphogen gradients. Dividing an organ into discrete spatial bins, combined with independent data on landmark genes, allows 
inference of spatial bins (highlighted) from which single cells had likely originated (figure adapted from A.R. and colleagues95). The scatterplots represent 
single cells (dots) projected onto two dimensions (e.g., first two principal components or using t-SNE).
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Graph-based visualization

through the state space is desirable. By connecting all states with
their follow-up states we compute the state transition graph, which
represents the complete dynamic potential of the underlying
network. States with no consecutive state represent end-points of
the system. These so-called steady state attractors then correspond to
the mature cell types in the biological context of differentiation.

From a thorough examination of the literature on myeloid
differentiation in mouse, we devised a network with Boolean
regulatory logic of transcription factors, from now on called the
players of the system. We studied the topology of the network and
analyzed the kinetics of small regulatory modules. Under
asynchronous updating, the regulatory network induces an acyclic,
hierarchical state space, whose different branches can be directly
attributed to known biological cell states. For validation, we
explicitly compared the Boolean states of the attractors with gene
expression profiles of differentiating and mature myeloid blood
cells. We confirm the the predictive power of our model by in silico
perturbations of players and interactions and compare the results
with known molecular phenotypes.

Results

Model construction
The scope of our model is the differentiation of common

myeloid progenitors (CMPs) into erythrocytes, megakaryocytes,

granulocytes and monocytes (see Figure 1A). We disregard earlier
hematopoietic stages (like the lineage switch between the lymphoid
and the myeloid lineage) and other blood cell lineages (like the
differentiation of mast cells or neutrophils from granulocytes).
From recent reviews and overview papers [1,4,18,19] we
assembled a set of 11 central myeloid transcription factors, known
to orchestrate the respective differentiation decisions. The set
comprises early hematopoietic factors (GATA-2, C/EBPa),
intermediate factors (GATA-1, PU.1) as well as late, secondary
fate determinants and cofactors (EKLF, Fli-1, FOG-1, SCL, Gfi-1,
cJun, EgrNab). The latter factor, EgrNab, represents an
integration of Egr-1, Egr-2 and Nab-2. While the three players
play distinct roles during other hematopoietic processes, Laslo
et al. [20] demonstrated highly correlated expression patterns as
well as similar functional roles in the context of myeloid
differentiation. The roles of all 11 factors and their respective
gene products have been determined by knockout, over-expression
and expression profiling studies (for an overview, see [18]). In
addition, many of the genes included in the model are known to be
involved in malignant cell transformations during hematopoiesis
[21,22]. Hematopoietic players which act only in monopotent
lineages or non-myeloid hematopoiesis were excluded from our
model. In the following, we examplarily discuss five such cases. (i)
NF-E2 is regulated by GATA-1 and SCL, but specifically
important for megakaryocytic development [23–25]. (ii) Similarly,
IRF8 is required for macrophage [26] and B-cell [27] differen-
tiation and was thus excluded. (iii) While C/EBPb is known to
rescue targeted disruption of C/EBPa, its primary physiological
role lies in macrophage differentiation [28]. (iv) The erythroid
transcription factor Gfi-1b is induced by GATA-1 [29] and
required in both erythrogenesis and megakaryogenesis [30], and is
thus not involved in the megakaryocyte vs. erythrocyte lineage
decision. (v) RUNX1 is an early transcription factor required in
HSCs [31] which is reused later in the differentiation process for
the megakaryocyte lineage [32]. To the best of our knowledge, no
direct role in myeloid lineage decision has been described for
RUNX1.

We generated a qualitative interaction model of myeloid
differentiation by investigating potential regulatory interactions
proposed by the Bibliosphere [33] text-mining tool (Figure 1B).
For the derivation of concrete Boolean update rules, we manually
interpreted the respective papers and the biochemical interactions
proposed therein. For example, GATA-2 activates its own
promoter, and is synergistically inhibited by GATA-1 and FOG-
1. As both players are required to exhibit the full inhibitory effect,
we combined them using an AND logic in the Boolean update
rule. For the regulation of PU.1, both GATA-1 and GATA-2
independently suppress the PU.1 promoter, and thus we employed
an OR logic for this case. Again, we paid special attention to
incorporate only those interactions which have been reported for
adult murine cells during myeloid differentiation. The list of all
update rules we derived for the 11 players along with short
justifications and references is given in Table 1. For a detailed
discussion of the role of each factor as well as its regulatory
interactions, we refer the reader to Text S1. Note that we propose
the inhibition of C/EBPa by an erythroid factor (see discussion
below).

It is important to understand that transcription factors are
commonly reused in varying contexts during stem cell differen-
tiation processes. For instance, GATA-2, SCL, Fli-1 and Gfi-1 are
also known to play important roles in early hematopoietic stem
cells [8,31,34–36]. The counter-antagonists PU.1 and GATA-1
synergize in the development of the eosinophil lineage [37],
whereas the mutual inhibition between PU.1 and GATA-2 is

Figure 1. A regulatory model of myeloid differentiation. (A)
Hematopoietic stem cell (HSC) differentiation consists of a series of
switch-like decisions. We here focus on differentiation into four myeloid
cell types and omit other myeloid cells and the lymphoid branch (greyed
out). For a detailed discussion of the different progenitor cell types, we
refer the reader to [1]. Abbreviations: MPP, multipotent progenitor; CMP,
common myeloid progenitors; MEP, megakaryocyte-erythrocyte progen-
itor; GMP, granulocyte-monocyte progenitor; CLP, common lymphoid
progenitor. (B) Literature-derived gene regulatory network for 11
myeloid players previously reported to be pivotal for the lineage
decisions in myeloid differentiation (compare Text S1). Note that this
visualization does not contain explicit Boolean update rules. Specifically,
it is not apparent from the graph visualization alone whether multiple
regulatory inputs are combined using AND or OR logic, which can make
substantial differences for the resulting Boolean dynamics.
doi:10.1371/journal.pone.0022649.g001

Differentiation of Myeloid Progenitors

PLoS ONE | www.plosone.org 2 August 2011 | Volume 6 | Issue 8 | e22649

For illustration, model myeloid differentiation…

… and add clusters to the data to model imperfect sampling. 

Graph-drawing often conserves topology of single-cell graph.
Weinreb et al., bioRxiv (2017)
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Continuous coordinate: random-walk based distance on graph
Generalize scale-free random-walk based distance  
measures to disconnected graphs

[35] proposed “diffusion distance” for measuring the similarity between data points, albeit not on
a graph, but using — in the graph language, fully-connected — Gaussian kernel matrix. Then, a
random-walk based distance measure has first been proposed to measure the similarity between cells
by Reference [8]; again not formulated for graphs. These authors introduced the measure of equation
(8c), which integrates out the number of steps n

steps

in (8b) to arrive at a scale-free measure.

The dpt measure is highly similar to (8a), which is much easier to interpret and scale-free, too: it
measures the average number of steps it takes to walk from ◆1 to ◆2. While equation (8b) arises as
the summed difference of transition probabilities to all other nodes for two random-walks of length
n

steps

that start at nodes ◆1 and ◆2, respectively [35, 39], (8d) considers the sum over all numbers of
n

steps

, hence a difference of “accumulated transition probabilities”, which are difficult to interpret;
the interpretation of equation (8c) is even more obscure.

Algebraic distance, which has been used for graph partitioning in recent years [42], approximates
(8a) and diffusion pseudotime and provides the computationally most efficient way of computing a
random-walk based distance measure.

Supplemental Note 4.3: Random-walk based distance measures for disconnected graphs

Evidently, both scale-free distance measures, mean commute time (8a) and diffusion pseudotime
(8c), are not defined for a disconnected graph G for which n

comps

> 1 eigenvalues are 1: they yield
an infinite distance even for two nodes ◆1 and ◆2 that are in the same connected component of G.
It is important to realize that each connected component of G automatically leads to a block Tb in
the transition matrix T that is itself a valid transition matrix and the spectrum of T is the union of
the spectra of the blocks Tb. The eigenvectors of T are the eigenvectors of the blocks Tb filled with
zeros at the positions of the other blocks [see e.g. 41]. Hence, we propose to extend mean commute
time and diffusion pseudotime for disconnected graphs as

mean commute time(◆1, ◆2) = 2n
edges

n
nodesX

r=1+n
comps

⇣
1

1� �i

⌘2
(vr◆1 � vr◆2)

2, (9a)

dpt(◆1, ◆2) =
n

nodesX

r=1+n
comps

⇣ �i

1� �i

⌘2
(vr◆1 � vr◆2)

2, (9b)

gdpt(◆1, ◆2) =
n

nodesX

r=1+n
comps

⇣ �i

1� �i

⌘2
(evr◆1 � evr◆2)2. (9c)

The distribution of 0 in the eigen vectors vr and ṽr guarantees that for two nodes ◆1 and ◆2 in the
same connected component b, only the spectrum of the block transition matrix Tb contributes. For
two nodes ◆1 and ◆2 in two disconnected components, the measures take the sum of their maximum
values in both components. The result should be interpreted as infinite. In the framework of graph
abstraction, one will never face a computation of distances across disconnected components, as these
will always be separated in partitions of attachedness 0.

We note that, in practice, instead of summing over all eigenvectors n
nodes

, we sum over a fixed
number of vectors as others [8, 43].

Supplemental Note 5: Reconciling clustering and pseudotime algorithms

While the gist of graph abstraction has been given in the main text when discussing Figure ??, here,
we provide a more formal explanation of why it reconciles clustering and pseudotime algorithms.

The aim of any pseudotemporal ordering of given data is to reconstruct the continuous latent variable
that associates with the variability in the data; often the process the process that generated the data.

17
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(8c), are not defined for a disconnected graph G for which n

comps

> 1 eigenvalues are 1: they yield
an infinite distance even for two nodes ◆1 and ◆2 that are in the same connected component of G.
It is important to realize that each connected component of G automatically leads to a block Tb in
the transition matrix T that is itself a valid transition matrix and the spectrum of T is the union of
the spectra of the blocks Tb. The eigenvectors of T are the eigenvectors of the blocks Tb filled with
zeros at the positions of the other blocks [see e.g. 41]. Hence, we propose to extend mean commute
time and diffusion pseudotime for disconnected graphs as
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The distribution of 0 in the eigen vectors vr and ṽr guarantees that for two nodes ◆1 and ◆2 in the
same connected component b, only the spectrum of the block transition matrix Tb contributes. For
two nodes ◆1 and ◆2 in two disconnected components, the measures take the sum of their maximum
values in both components. The result should be interpreted as infinite. In the framework of graph
abstraction, one will never face a computation of distances across disconnected components, as these
will always be separated in partitions of attachedness 0.

We note that, in practice, instead of summing over all eigenvectors n
nodes

, we sum over a fixed
number of vectors as others [8, 43].

Supplemental Note 5: Reconciling clustering and pseudotime algorithms

While the gist of graph abstraction has been given in the main text when discussing Figure ??, here,
we provide a more formal explanation of why it reconciles clustering and pseudotime algorithms.

The aim of any pseudotemporal ordering of given data is to reconstruct the continuous latent variable
that associates with the variability in the data; often the process the process that generated the data.
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Supplemental Figure 5 | Assessing the degree to which data clusters by measuring attachedness

among partitions. Here, we show samples from three Gaussian mixture models (a, b, c), which display
different degrees of clustering structure: the number of centers is fixed to 5 but the standard deviation is
increased from 1 (a) over 6 (b) to 10 (c). Graph abstraction measures how well Louvain-clustering based
partitions [34] separate from each other. For standard deviation 10 (c), the clustering result of ??c predicts
fully connected partitions, hence a dense abstracted graph G⇤. The geometry of data forms a fully continuous
structure.

Supplemental Note 2.2: Random-walk based measure for attachedness

Aside of measuring attachedness between partitions using connectivity one can also use the random-
walk based distance measure d discussed in Supplemental Note 4.

As the distance d strongly correlates with the number of paths between two points [see, e.g., 35],
continuity between partitions as measured by the number of their connecting paths strongly corre-
lates with the distances of their nodes. Measures for the attachedness of two partitions i1 and i2
can then be obtained by invoking simple summary functions for the nodes {◆1} and {◆2} in these
partitions

a1(i1, i2) = min◆12P1,◆22P2d(◆1, ◆2), (1)
a2(i1, i2) = avg◆12P1,◆22P2

d(◆1, ◆2), (2)
a3(i1, i2) = median◆12P1,◆22P2d(◆1, ◆2), i1, i2 2 G⇤, ◆1, ◆2 2 G. (3)

Similar summary functions appear in different flavors of hierarchical clustering. Each of these func-
tions comes with different advantages and disadvantages. Taking the minimum is independent of
the specific shape of a partition but is prone to outliers: it is only a viable option as the distance
measure d itself is highly robust being computed as an average over all random walks on the graph.
Taking the average or median is robust but can cause perfectly attached partitions of the graph
appear far way if they are long-stretched out, that is, if d increases strongly when walking through
them.

As even in the long-established hierarchical clustering algorithms, no definitive answer for the best
choice of summary function has been found, we also do not claim to give a definitive answer. In
practice, we use arw

= a1. For the case in which, for a given partition i, we want to determine to
which partition j 6= i it is most strongly attached, we adapt the following heuristic: if a1 yields no
significant answer but a3 yields one, we use a3 as a decision criterion, and otherwise a1.

Supplemental Note 2.3: Confidence score for random-walk measure for attachedness

While the random-walk based measure for attachedness has the advantage of directly measuring the
continuity of paths along the graph G, it is much harder — and might be impossible — to establish
a statistical model for measuring confidence.

To nonetheless be able to compare the attachedness of partitions in a tree-like subgraph T ⇤ of G⇤,
most of which presumably captures well the continuous structure of the data, we use the follow-
ing heuristic. We compute the median attachedness atree

= median(i,j)2T ⇤a(i, j) and assume an
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Supplemental Figure 4 | Comparison of graph abstraction with Monocle 2 and DPT for data

of Reference [? ]. a, b, Result of graph abstraction as in Figure 2c, but colored by experimental cell
type annotation. c, DPT non-robustly predicts branching groups that relate cell types that are remote from
each other. c, d, Running Monocle 2 with two different values for the latent space dimension, one obtains
qualitatively wrong results.

account for paths starting within the partitions. The limitation can be overcome by invoking a
random-walk based measure for attachedness (Supplemental Note 2.2).
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Supplemental Figure 9 | Comparing topologies of abstracted graphs. a, b, Partitions obtained
using Louvain clustering in two runs with different parameters, equivalent to those shown in Figure 2a: both
abstracted graphs describe the same topology. Note that in Figure 2a, we use the Reingold-Tilford layout
to draw the tree whereas here, we use the FR layout also for the abstracted graph. c, Reference partitions
colored with the associated new partition that has the largest overlap.

normalized with respect to the reference groups N ⇤
1 (Supplemental Figure 9c) or with respect to the

new groups N ⇤
2 , respectively (Supplemental Figure 9d). In order to obtain a symmetric score that

measures how well two partitions mutually overlap — are mutually contained in each another — we
consider the minimum of both normalizations — the “minimal overlap” — for each combination of
groups (i1, i2) 2 (N ⇤

1 ,N ⇤
2 ). Supplemental Figure 9e colors each partition in N ⇤

1 with the partition
in N ⇤

2 with which it has the largest minimal overlap.

Supplemental Note 7.2: Comparing paths in abstracted graphs

For each shortest path between two leaf nodes in G⇤
2 , there is a shortest path between the associated

nodes in G⇤
1 . This enables to compare the two paths and to count the fraction of steps that are consis-

tent among two paths. To measure the agreement of the topologies between two abstracted graphs,
we compute the fraction of agreeing steps and the fraction of agreeing paths over all combinations
of leaf nodes in two given abstracted graphs.

For instance, consider the shortest path between leafs (21, 2) in the reference graph G⇤
1 and the

shortest path between leafs (7, 11) in the new graph G⇤
2 in Supplemental Figure 9a and b, respectively:

p1 = (21, 8, 18, 7, 9, 2), p1 2 G⇤
1

p2 = (7, 2, 9, 10, 11), p2 2 G⇤
2 . (10)
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Figure 2 | Inference of gene dynamics in hematopoiesis. a, Fruchterman-Reingold (FR) visualization
of single-graph for myeloid differentiation for data of Reference [17] and the abstracted graph in which edge
width is proportional to the confidence in the presence of an edge. The partitions of the single-cell graphs
and nodes of the abstracted graph are labelled with the cell type identified by Reference [17], with which a
partition has the highest overlap (Supplemental Figure 8). b, Gene dynamics along the highest-confidence
paths to erythrocytes, neutrophils and monocytes in the abstracted graph. Within each group, cells are
ordered according to pseudotime from the earliest progenitor cell in the 0/MEP partition. c, The data of
Reference [18] displays a much higher level of non-tree like geometry due to a higher content of heterogeneous
stem cells. d, The gene expression changes along the most confident paths to erythrocytes, neutrophils and
monocytes are consistent with those observed in panel c (Supplemental Figure 8).

cell graph G are generated by following established preprocessing steps with default parameters
[15, 19–21] and G is visualized using the Fruchterman-Reingold [FR, 22, 23] algorithm, which con-
serves continuous structure in the data better than tSNE (Supplemental Figure 6, Reference [15]).
While the edges of the single-cell graph are too many to be meaningfully shown, we can visualize
the simple abstracted graph G⇤, using a tree-based graph drawing layout (Figure 2a).

4

data of 
Paul et al., Cell (2015)

a

b

Supplemental Figure 10 | Robustness of the inference of abstracted graphs in Figure 2. Sampling
a wide variety of the two input parameters results in vastly varying numbers of partitions, hence vastly
different clusterings of the data; note the large spread of the number of Louvain groups. Nonetheless, the
topology is robustly inferred. We ran this robustness study for a, the minimal example and b, data of
Reference [17] as in Figure 2a and b. Graph topologies are compared as explained in Supplemental Note 7.

By computing the overlap of reference partitions with new partitions, we can map p1 to the label
space of G⇤

2

pmapped

1 = ((7, 2), (6, 7, 2), (2, 7), (2, 9), (9, 10, 3), (11, 10)), (11)

that is, partition 21 in G1 has finite minimal overlap with partitions 7 and 2 in G2, partition 8 in G1

has overlap with partitions 6, 7 and 2 in G2, and so on.

Transitioning through path p2 and counting for each transition whether it’s present or not in pmapped

1
allows to count the number of agreeing steps. If all steps agree with each other, the paths p1 and p2
agree with each other. In the example of equation (10), p2 involves 4 steps, 4 of which agree with
pmapped

1 .

Supplemental Note 7.3: A related measure from the literature

Previously, it has been suggested to correlate the distribution of path lengths of all paths through
trees as a measure for topological similarity of trees [11]. Specifically, for a tree whose nodes label
sets of data points, the lengths of all paths between all pairs of data points are computed. The
correlation of such path-length sets obtained for two trees is suggested as a measure for topological
similarity of the two trees. Besides being highly redundant and costly to compute, the resulting
measure is very rough as it does not map paths onto each other; that is, it does not account for
inconsistencies of paths with the same length.
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Consistent continuous gene changes
… across datasets from different labs.
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Figure 2 | Graph abstraction enables consistent reconstruction of gene expression dynamics
across datasets. a, Fruchterman-Reingold (FR) visualization of single-graph for myeloid differentiation for
data of Paul et al. [18] and the abstracted graph in which edge width is proportional to the confidence in the
connectivity of cell groups. The tree-like subgraph that best explains the topology of the data is highlighted
with solid edges. However, there are several connections of high confidence that do not confirm with a tree
topology and the tree should only be viewed as a guide to the eye but not as a faithful representation of the
topology of measured data. The cell groups within the single-cell graphs and the nodes of the abstracted graph
are labelled with the cell type of highest overlap identified by Paul et al. [18] . The abbreviations are MEP for
myeloid-erythrocyte progenitor, Mk for megakaryocytes, Lymph for lymphocytes, Ery for erythrocytes, GMP
for granulocyte/macrophage progenitors, Mo for monocytes, Baso for basophils, Neu for neturophils, DC for
dendritic cells and Eos for eosinophils. Monocytes appear to be progenitors of Neutrophils in this layout of
the abstracted graph, using another layout, a connecting edge to cell group 14/GMP, see Supplemental Figure
7. b, Gene dynamics along the highest-confidence paths — which include dashed edges — to erythrocytes,
neutrophils and monocytes in the abstracted graph. Within each group, cells are ordered according to
pseudotime from the earliest progenitor cell in the 0/MEP group.c, The data of Nestorowa et al. [19] displays
a much higher level of non-tree like geometry due to a higher content of heterogeneous stem cells. d, Gene
expression changes along the most confident paths to erythrocytes, neutrophils and monocytes are consistent
with those observed in panel c (Supplemental Figure 7).

to Neutrophils and Irf8 and Csf1r are only activated along the paths to monocytes (Figure 2b, d and
Supplemental Figures 6 and 7). Remarkably, the connectivity structure shown in Figure 2c is not
clear enough to decide whether there is a shared megakaryocyte-erythrocyte-basophil progenitor,
as has previously been suggested to exist in human [25], or whether neutrophils, basophils and
monocytes originate separately from the erythroid lineage (see also Supplemental Figure 7). Below,
we discuss that algorithms for the inference of lineage trees only allow to obtain non-robust trees
for the data of Paul et al. [18] (Supplemental Figure 3) and are not able to produce a meaningful
result for the data of Nestorowa et al. [19] (Supplemental Figure 4); presumably because the latter
contains a higher fraction of strongly heterogeneous stem cells and deviates strongly from a tree
topology, which has been observed previously for hematopoietic data [26].

Graph abstraction enables inferring the lineage tree of a whole adult animal.
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Figure 2 | Graph abstraction enables consistent reconstruction of gene expression dynamics
across datasets. a, Fruchterman-Reingold (FR) visualization of single-graph for myeloid differentiation
for data of Paul et al. [18] and the abstracted graph in which edge width is proportional to the confidence
in the connectedness of cell groups. The tree-like subgraph that best explains the topology of the data is
highlighted with solid edges. However, there are several connections of high confidence that do not confirm
with a tree topology. The cell groups within the single-cell graph and the nodes of the abstracted graph are
labelled with the cell type of highest overlap identified by Paul et al. [18]. The abbreviations are MEP for
myeloid-erythrocyte progenitor, Mk for megakaryocytes, Lymph for lymphocytes, Ery for erythrocytes, GMP
for granulocyte/macrophage progenitors, Mo for monocytes, Baso for basophils, Neu for neturophils, DC for
dendritic cells and Eos for eosinophils. b, Continuous gene expression changes along the highest-confidence
paths — which include dashed edges — to erythrocytes, neutrophils and monocytes in the abstracted graph.
Within each group, cells are ordered according to a random-walk based distance from the earliest progenitor
cell in the 0/MEP group. c, The data of Nestorowa et al. [19] displays a much higher level of non-tree like
geometry, more similar to a cloud, due to a higher content of heterogeneous stem cells. d, Gene expression
changes along the highest-confidnce paths to erythrocytes, neutrophils and monocytes are consistent with
those observed in panel c. However, as the data has been measured earlier in hematopoiesis, changes in
marker genes occur later during progression along paths.

late stages only along the paths to erythrocytes. Gfi1 and Elane are only activated along the paths
to Neutrophils and Irf8 and Csf1r are only activated along the paths to monocytes (Figure 2b, d and
Supplemental Figures 6 and 7). Remarkably, the connectivity structure shown in Figure 2c is not
clear enough to decide whether there is a shared megakaryocyte-erythrocyte-basophil progenitor,
as has previously been suggested to exist in human [25], or whether neutrophils, basophils and
monocytes originate separately from the erythroid lineage (see also Supplemental Figure 7). Below,
we discuss that algorithms for the inference of lineage trees only allow to obtain non-robust trees
for the data of Paul et al. [18] (Supplemental Figure 3) and are not able to produce a meaningful
result for the data of Nestorowa et al. [19] (Supplemental Figure 4) because the latter contains a
high fraction of heterogeneous stem cells and strongly deviates from a tree topology. Such behavior
during differentiation has been observed before and termed “cloud of cells” [26].

Graph abstraction enables inferring the lineage tree of a whole adult animal.

The complicated global topology of G represents the information about the continuity of biological
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Learn where data is connected  
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Supplemental Figure 11 | Abstracted graphs for differentiated PBMCs. a, Reconstruction of motifs
of the lineage tree of 68 000 PBMC cells [20]. This dataset serves as a negative control for the predictions
of graph abstraction as it mostly lacks cells in the transitioning stages between different cell types. Hence,
only motifs of the lineage tree of PBMCs are reconstructed in the abstracted graph. b, 33k PBMCs from
10X Genomics. Cells have been annotated using Seurat [19]. c, 3k PBMCs from 10X Genomics.

Supplemental Note 8: Iteratively constructing a topology-conserving tree

Consider the abstracted graph G⇤ in which edge weights measure how continuous partitions in the
single-cell graph G are connected to each other. We aim to identify the tree-like subgraph T ⇤ in the
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single-cell graph G are connected to each other. We aim to identify the tree-like subgraph T ⇤ in the
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Partial reconstruction of the 
PBMC lineage tree. 

Only motifs can be 
recovered as data mostly 
consists of differentiated 
cells.

data for 68k cells from 
Zheng et al., Nat. Comms. (2017) 

data for 3.6k cells from 10X 
Genomics



Lineage tree of an adult animal: planaria
Plass, Solana, …, Rajewski, unpublished (2017)

• Likely candidate for differentiation tree within abstracted graph 

• Key genes during differentiation by following paths in abstracted 
coordinate system

46 cell types, all 
continuously related



Thank you for your attention!
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Code and documentation: https://github.com/theislab/graph_abstraction 
On bioRxiv within the next days
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Comparison with Monocle
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c

Supplemental Figure 1 | Comparison with stemID 2 and Monocle 2 for a minimal example.

a, Prediction of graph abstraction, reproduced from Figure 2a. b, Prediction of Monocle 2 [6], the best
result after testing several parameters for the latent-space dimension. The clusters (groups 7-10 in panel a)
dictate the shape of the inferred tree, being responsible for three of the four observed branches. Detecting
the continuous manifold is completely missed. The same coloring as in Figure 2a is used. c, Prediction of the
lineage tree of stemID 2, the successor of stemID [12]. The author of stemID, D. Grün was asked to make
a prediction for the minimal example by adjusting parameters. Nonethelss, the inferred lineage tree shows
a single branching at group 2 into groups 1 and 10, instead of the four branchings seen in Figure 2a. The
coloring and numbering of groups is chosen internally by stemID 2.

Comparisons for data that represents a simple tree. As a negative control, we aimed to obtain
sensible results with the competing algorithms and considered a simpler dataset that only contains
the continuous tree-like manifold of the previous example. Graph abstraction gives the correct
results using default parameters (Supplemental Figure 2a). Monocle 2 can be tuned to yield the
correct result (Supplemental Figure 2b). Eclair [11] obtains a wrong result even for this simple tree
and guidance by G. Giecold, the author of the method (Supplemental Figure 2c, d). DPT [8] does,
by construction, not infer a lineage tree but merely detects two branching subgroups; similar to a
clustering algorithm. In a hierarchical implementation [21], it detects an arbitrary number of groups.
Using the latter to detect four branching we can detect two branchings (Supplemental Figure 2e)
but fail to detecting a third. Note that only when using diffusion maps for visualization, the choice
of groups looks natural (Supplemental Figure 2f).
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Supplemental Figure 2 | Comparing graph abstraction with different methods for reconstructing

a simple tree. Results using, a, graph abstraction, b, Monocle 2 [6], c, d, ECLAIR [11], e, f, DPT [8] in
its hierarchical implementation [21].

Supplemental Note 1.3: Comparison with Monocle 2 for data of Reference [17]

In the recent Monocle 2 paper [6], the sole complex differentiation tree shown was the hematopoietic
lineage tree for data of Reference [17] in Supplemental Figure 16. In the the preprocessing step for
the analysis of this data, Reference [6] removed a cluster of lymphoid cells identified by Reference
[17]. Clearly, in many situations, clusters of cells that are not of interest to the specific biological
question might not be annotated. We therefore wondered what would happen when rerunning
Monocle 2 with the exact same settings on the same data but keeping the cluster of lymphoids.
While graph abstraction is produces consistent results irrespective of the presence of this cluster
(Supplemental Figure 3a, b), Monocle 2’s inferred tree changed dramatically and is biologically no
longer meaningful on a qualitative level. The comparisons including all parameter settings can be
reproduced from https://github.com/theislab/graph_abstraction/tree/master/paul15.

Supplemental Note 1.4: Comparison for data of Reference [18]

Figure 4 shows a comparison for data of Reference [18].

Supplemental Note 1.5: Comparison of runtimes

Computing the result of Figure 1a using graph abstraction took 0.5 s. The stemID computation,
including tSNE, ran for 17 min. Comparing this with 0.5 s for graph abstraction and 2.8 s for
tSNE, both in Scanpy [21], graph abstraction is 309 times faster. The Monocle 2 computation took
13.8 s in the fastest case. Comparing this with 0.5 s for graph abstraction, graph abstraction is 28
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Supplemental Figure 1 | Comparison with stemID 2 and Monocle 2 for a minimal example.

a, Prediction of graph abstraction, reproduced from Figure 2a. b, Prediction of Monocle 2 [6], the best
result after testing several parameters for the latent-space dimension. The clusters (groups 7-10 in panel a)
dictate the shape of the inferred tree, being responsible for three of the four observed branches. Detecting
the continuous manifold is completely missed. The same coloring as in Figure 2a is used. c, Prediction of the
lineage tree of stemID 2, the successor of stemID [12]. The author of stemID, D. Grün was asked to make
a prediction for the minimal example by adjusting parameters. Nonethelss, the inferred lineage tree shows
a single branching at group 2 into groups 1 and 10, instead of the four branchings seen in Figure 2a. The
coloring and numbering of groups is chosen internally by stemID 2.

Comparisons for data that represents a simple tree. As a negative control, we aimed to obtain
sensible results with the competing algorithms and considered a simpler dataset that only contains
the continuous tree-like manifold of the previous example. Graph abstraction gives the correct
results using default parameters (Supplemental Figure 2a). Monocle 2 can be tuned to yield the
correct result (Supplemental Figure 2b). Eclair [11] obtains a wrong result even for this simple tree
and guidance by G. Giecold, the author of the method (Supplemental Figure 2c, d). DPT [8] does,
by construction, not infer a lineage tree but merely detects two branching subgroups; similar to a
clustering algorithm. In a hierarchical implementation [21], it detects an arbitrary number of groups.
Using the latter to detect four branching we can detect two branchings (Supplemental Figure 2e)
but fail to detecting a third. Note that only when using diffusion maps for visualization, the choice
of groups looks natural (Supplemental Figure 2f).
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