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“Tensor Trains I": noninteracting bits
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“Tensor Trains I": noninteracting bits

& ®® -

Vector of random variables X € {0, 1}* with joint probability mass
L

normalized with Z = 3" e @)/

> p has 2 components = € {(0,0, ...,0), (0,0,...,1),... }.

> Note 2100 ~ 1030 ~ 10'® TB.
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“Tensor Trains I": noninteracting bits

& ®® -

Compute correlations via cov(X,,, X;,) = (X5 Xm) — (Xn)(Xn),

(XnXm) = Z TnTm D
X

> Naive brute force: 2° operations necessary.

> Monte Carlo: sampling in space of 2% states.
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“Tensor Trains I": noninteracting bits

& ®® -

Better: independent degrees of freedom X, imply separability

L
1 - _yxn/T
Do = Doy gy = b~ Tnoatn/

= 03,0z .- Ay, Ay, =€
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“Tensor Trains I": noninteracting bits

& ®® -

Better: independent degrees of freedom X, imply separability

L
1 _— _xn/T
Pz = Pzy@2,....0, = 7€ Lrizy on/

1 _ _—xzn/T
= Z0z,0gy .- Az, Qg, =€ "/.

Compute correlations in 2L operations . ..

00500 = (S (T I (Xa)

k#nm T

= (X,){(X;m) ... there are none.
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“Tensor Trains II": interacting bits (Ising model)

(O—-()~()~()—

L-1
Pe = %e*H(w)/T, H(z)=— Z Tyl
n=1
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Two-body interactions imply “almost — separability”

2Y By = Y emnT /T
€T
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Two-body interactions imply “almost — separability”

ZZﬁm = Z Aa:1:z:2Ax27x3 cee
T x

=gsumAA..., Aoy, = @t/ 4 ¢ R2X2

where gsum is the grand sum.

25



“Tensor Trains II": interacting bits (Ising model)

(O—-()~()~()—

Two-body interactions imply “almost — separability”

ZZﬁm = Z Aa:1:z:2Ax27x3 cee
T x

nn+1/T 2x2
=gsumAA..., Agponyy = /T 4 e R?X2)
where gsum is the grand sum.

> Compare to non-interacting case

—n/T 2
ZZPwZZamam..., axn:em/, a € R=,
€T €T

25



“Tensor Trains II": interacting bits (Ising model)

(O—-()~()~()—

Compute correlations in 23L operations (L matrix products)

(XnXm)p = ;gsumj:[i <A[k])M:]j: (A[’f])iji (A[k})

1 0
where M_<0 _1>



“Tensor Trains II": interacting bits (Ising model)

(O—-()~()~()—

Compute correlations in 23L operations (L matrix products)

(XnXm)p = ;gsumj:[i <A[k])M:]j: (A[’f])iji (A[k})

1 0
where M_<0 _1>

> Compare to non-interacting case (2L operations)

(X Xom)p = ;(;%Ax) <§xmAx> I1 (ZA“)

k#nm Tk
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“Tensor Trains III": long-range interacting bit chain wer o)

L—2
e H@/T  H(x) = — Z TnTn4+1Tn+2

n=1

=
8
I
NI~
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“Tensor Trains III": long-range interacting bit chain wer o)

L-2
1 —H(x)/T
pe = e H@T [H(z) = - E TnTnt1Tnt2
n=1
A:E Trt1Tni2 — ewnxn+1$n+2/T
n4n n
Zzpw - Z H Afnmnﬂ"”w? A € R2X2x2

xr n=1
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“Tensor Trains III": long-range interacting bit chain wer o)

L—-2
1 —H(x)/T
pe = e H@T [H(z) = - E TnTnt1Tnt2
n=1
A:E Trt1Tni2 — ewnxn+1mn+2/T
DOVZEDY I A
nTn+1Tn+2 2%2%2
o el AeR
B = Al‘nl‘n+lwn+2

_ Z H B, B / z}, (2Tn41+Tn12)
zn n+1 Ty 1Ty o Bec R2%4

x’ n=1



“Tensor Trains III": long-range interacting bit chain wer o)

L—2
e H@/T  H(x) = — Z TnTn4+1Tn+2

n=1

N

Px =

— ewnxn+1mn+2/T

A£U X
nTn4+1Tn+42
Zme = Z H Aznmn+1$n+2 A c R2X2X2

xr n=1

S T B, Pt
o 3, n+1 n+1x;1+2 Bec R2X4

x’ n=1

=A

InTn4+1Tn42

Tensor Train format > (23 + 4%) L operations
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“Tensor Trains" in Statistical Mechanics

e Write probability mass function
p:{0,1,...d}* - R, d,LeN,

as vector i
pe =p(x), peR,
which is indexed and parametrized by x € {0, 1, ..., d}".
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“Tensor Trains" in Statistical Mechanics

e Write probability mass function
p:{0,1,...d}Y R, d,LeN

as vector .
pz=p(x), peR,

which is indexed and parametrized by x € {0, 1, ..., d}".

If pe = p(x) does not couple all index components x,, among each
other, there is a low rank Tensor Train representation.

This reduces computational cost in summations over p(x) from
exponential to linear in system size.

e What about quantum mechanics?

6/25



Statistical Mechanics vs. Quantum Mechanics
Instead of considering sums over classical weights, as in the partition sum,

1= Zp:c = Z<w|ﬁw‘m>7

where we used a somewhat exaggerated notation.

~
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Statistical Mechanics vs. Quantum Mechanics
Instead of considering sums over classical weights, as in the partition sum,

1= Zp:c = Z<w|ﬁw‘m>7

where we used a somewhat exaggerated notation. We now consider
quantum many-body states

) =3 cala),

xr

where |x) = |21) ® |22) ® - - ® |xp) = |z122 ... 2L) is a tensor product of
single-particle basis states |x;). For example

lzi) € {| 1), 4a)}

e But, do we know anything about how the vector of coefficients ¢ = (cz)
couples its components, so that the tensor train format is meaningful?
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For now we don’t have to. Simply try an ansatz!
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For now we don’t have to. Simply try an ansatz!

e We can e.g. simply do a mean-field theory! Let us assume

!
Ce = a*ta®? ... xL—”a”"l

then state can be manipulated doing ~ L operations

®

) =" calz) = ) = Zﬂawm H(Z o)

€T 7
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For now we don’t have to. Simply try an ansatz!

e We can e.g. simply do a mean-field theory! Let us assume

!
Ce = a*ta®? ... xL—”a”"l

then state can be manipulated doing ~ L operations

) =D calw) = [me) = D ICEE H(Zawm)

T 7 x;

e How to determine the factors a®i? Variationally solve

5.0, SOMEH [YwiF)
U (dmrlvmE)

e Approximation to ground state. Approximation is good if ground state is
in the same class of states as the ansatz |[¢mF).

=0.



Tensor Trains IV: Matrix Product States Schollwéck, arXiv:1008.3477 (2011)

e Relax mean-field assumption for coefficients of many body states

Co *axla“a ..axL:Haxi

to one that factorizes in matrices

o= Y ATIAT AT AT =[] A"

vive - Trvevs ¢t
{vi}
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Tensor Trains IV: Matrix Product States Schollwéck, arXiv:1008.3477 (2011)

e Relax mean-field assumption for coefficients of many body states

Co *axla“a ..axL:Haxi

to one that factorizes in matrices

o= Y ATIAT AT AT =[] A"

vive - Trvevs ¢t
{vi}

e An MPS can be manipulated with costs of Lm3, where m is the
dimension of the matrices A%

Y) = Zcm’x lYmps) = ZHAW?C

e Are ground states in the same class as MPS? Which is this class? Are
the coefficients ¢, in ground states weakly coupled?
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Tensor Trains IV: Weakly entangled states

¢ & ¢ ¢ ¢ ¢ ¢ ¢ ¢
G Y R e
¢ ¢ & ¢ ¢ ¢ ¢ ¢ ¢
¢ & & ¢ ¢ ¢ ¢ ¢ ¢
[ 2 ¢ ¢ ¢ @& @

Eisert, arXiv:1308:3318 (2013)

Gapped Hamiltonians with short range interactions.
e Physical correlations have a finite range.

e Entanglement fulfills area law: entanglement of a region A is
proportional to surface |0A|, not volume |A|, of this region.
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Tensor Trains IV: Weakly entangled states

¢ & ¢ ¢
L ol ol el
¢ ¢ ¢ ¢
¢ ¢& ¢ ¢
[ 2 { ]

Eisert, arXiv:1308:3318 (2013)

Gapped Hamiltonians with short range interactions.

e Physical correlations have a finite range.

e Entanglement fulfills area law: entanglement of a region A is
proportional to surface |0A|, not volume |A|, of this region.

> There is a low-rank Tensor Train representation!
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Dynamical Mean-Field Theory
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Quantum Embedding

¢ & & ¢ ¢ ¢ ¢ ¢ ¢
QGRS RS RN T G g m— G =
¢ & ¢ ¢ ¢ ¢ ¢ ¢ ¢
¢ & & ¢ ¢ ¢ ¢ ¢ ¢
¢ & ¢ ¢ ¢ ¢ ¢

Eisert, arXiv:1308:3318 (2013)

e Dynamical Mean-Field Theory metzner & Vollnardt (1989) Georges & Kotliar (1992)

e Density Matrix Embedding Theory «nizia & chan, PRL 109, 186404 (2012)
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Dynamical Mean-Field Theory

-Im A(w)

imp.
114— I;&

g &y v
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Dynamical Mean-Field Theory

-Im A(w)

g &y v

1. Find function A(w) that describes the bath.

2. Solve the reduced cluster problem.

> Use Tensor Trains to represent the wave function of the cluster.

13 /25



Tensor Trains and Dynamical Mean-Field Theory
Tensor Trains ~ Density Matrix Renormalization Group (DMRG)

Algorithmic approaches

e Lanczos: unstable and imprecise

Garcia, Hallberg & Rozenberg, PRL 93, 246403 (2004)
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Nishimoto & Jeckelmann, J. Phys.: Cond. Mat. 16, 7063 (2004)

Karski, Raas & Uhrig, PRB 72, 113110 (2005) Karski, Raas & Uhrig, PRB 77, 075116 (2008)

e Chebyshev and Fourier expansions: cheaper and precise

Ganahl, Thunstrom, Verstraete, Held & Evertz, PRB 90, 045144 (2014)

Wolf, McCulloch, Parcollet & Schollwéck, PRB 90, 115124 (2014a) > 2-site cluster!
Wolf, McCulloch & Schollwdck, PRB 90, 235131 (2014b) > entanglement and non-EQ!
Wolf, Justiniano, McCulloch & Schollwéck, PRB 91, 115144 (20155) 1> relation Chebyshev/ Fourier!
de Vega, Schollwéck & Wolf, PRB 02, 155126 (2015) > bath discretization!
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Algorithmic approaches
e Lanczos: unstable and imprecise
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e Chebyshev and Fourier expansions: cheaper and precise

Ganahl, Thunstrom, Verstraete, Held & Evertz, PRB 90, 045144 (2014)

Wolf, McCulloch, Parcollet & Schollwéck, PRB 90, 115124 (2014a) > 2-site cluster!
Wolf, McCulloch & Schollwdck, PRB 90, 235131 (2014b) > entanglement and non-EQ!
Wolf, Justiniano, McCulloch & Schollwéck, PRB 91, 115144 (20155) 1> relation Chebyshev/ Fourier!
de Vega, Schollwéck & Wolf, PRB 02, 155126 (2015) > bath discretization!

e Imaginary axis: again cheaper!
Wolf, Go, McCulloch, Millis & Schollwsck, PRX 5, 041032 (2015a) I> 2-Site cluster for 3-band model!
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Tensor Trains and Dynamical Mean-Field Theory
Tensor Trains ~ Density Matrix Renormalization Group (DMRG)

Applications

e Non-thermal melting of Neel order in the Hubbard model

Balzer, Wolf, McCulloch, Werner & Eckstein, PRX 5, 031039 (2015)
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Tensor Trains and Dynamical Mean-Field Theory
Tensor Trains ~ Density Matrix Renormalization Group (DMRG)

Applications
e Non-thermal melting of Neel order in the Hubbard model

Balzer, Wolf, McCulloch, Werner & Eckstein, PRX 5, 031039 (2015)

e Benchmark quantum computing protocols
Bauer, Wecker, Millis, Hastings & Troyer, PRX 6, 031045 (2016)

Kreula, Clark & Jaksch, Sci. Rep. 6, 32940 (2016)

e In general: situations not treatable by QMC and NRG, which can be

o) Correlated materlals Linden et al., in progress (2016)
o gauge fields and topological phases

15/25



Machine Learning
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Machine Learning

Estimate noisy functional relation
f: X =), Y = f(X)+ N,

from data D = {(z;, yi>}?jinples-
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Machine Learning

Estimate noisy functional relation

2
+
o)
g
I
P~

f: X =),

TNsamples
1

{(zs,y0)};

2

from data D

o f:RZX28 (24},

Stoudenmire & Schwab, NIPS (2016)



Machine Learning

Estimate noisy functional relation

XUYINNA =T S>>

2
+
o)
g
I
P~

f: X =),

TNsamples
1

{(zs,y0)};

2

from data D

o f:RZ®X28 5 194}

Stoudenmire & Schwab, NIPS (2016)

e Linear regression using Gaussian noise model

N(y‘wla: + wo, 02)

02))

~ (w,

p(y|z, 6

o)
N

~



Machine Learning

Estimate noisy functional relation
f: X =), Y = f(X)+ N,

from data D = {(z;, ;) }, 7.

sxXL LN
PFERLENLPANP
RLEQLLT RN NN L
RLZCANONNR[ Y
~AFLLNNNMN
RALTRLPNPPENL
LRELRENRNIND
L ANTLOVL Y P

Ry LesppNN_N
SE€LERFNOLNPN
R R 2 AR AN
ERFFLEONRBPQ
XA LLEwRNPIN
SR CcTRBBWN DY

QA
2

2
2>
7

4

4
y
%
ki

o f:RZ®X28 5 194}

Stoudenmire & Schwab, NIPS (2016)

e Linear regression using Gaussian noise model

p(y]z,0 = (w,0%)) = N (y|wiz +wo, 0?)

Estimate parameters?

0™ = argmaxgp(0|D, model, prior beliefs)



Machine Learning

Estimate noisy functional relation
f: X =), Y = f(X)+ N,

from data D = {(z;, ;) }, 7.

sxXL LN
ERFFLEONRBPQ
XA LLEwRNPIN
SR CcTeBBWNDO
PFERLENLPANP
RLEQLLT RN NN L
RLZCANONNR[ Y
~AFLLNNNMN
RALTRLPNPPENL
LRELRENRNIND
L ANTLOVL Y P

R LecppNNGLY
SELELEFNOLNPN
RoRF-oYPRUN

QA
2

2
2>
7

4

4
y
%
ki

o f:RZ®X28 5 194}

Stoudenmire & Schwab, NIPS (2016)

e Linear regression using Gaussian noise model

p(y]z,0 = (w,0%)) = N (y|wiz +wo, 0?)

Estimate parameters?
0™ = argmaxgp(0|D, model, prior beliefs)

> Integrate and optimize a high-dimensional distribution.
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= E Axlrz szl“s s Aznmaqunmax
{z | n'#n}
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Graphical Models

it OO

p($n) = Z p(x17"‘?xnmax)
{1 #n}

= E A$112 szl“s s Aznmaxflﬁnmax
{z | n'#n}

Markov Chain @ @ @ @

18 /25



Graphical Models

it OO

p($n) = Z p(x17"‘?xnmax)
{1 #n}

= E Axlrz szl“s s Aznmaqunmax
{z | n'#n}

Markov Chain @ @ @ @

p(zn) = Z p(x:b"‘?xnmax)
(| 0}

- Z A:cnxn_lp(gcn—l)

Tp—1

> Here, the distribution itself factorizes!
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Directed Acyclic Graphs

Markov chain

P15 Tppy) = P(1) H P(Tnt1lTn)
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Directed Acyclic Graphs

Markov chain

P15 Tppy) = P(1) H P(Tnt1lTn)

General graph

Ttmax

P(T1s s Tiga) = H p(znlpa(zn))
n=1

Example: X; = yellow teeth, Xo = smoke, Y = cancer, X3 = diet.
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Inferring gene regulation from single-cell data

e Infer causal structure of
gene regulation.

Diffusion pseudotime Branch 1 Branch 2
—_

NIRRT DT WME  Population index

Gene
Tal1 expression
i Sox7 10
Hhex 5
i Noicht M3
Egfl7 %
W1 | [ Lmo2 30
Lyit
‘ecam1 Not observed
1 I AENI| . Cohs
| - Cbfa2t3h
Gene
dynamics
& Activation

v Deactivation

Cell-state
composition

Precursor Decision Terminal Terminal
stage stage branch 1 branch 2

Haghverdi, Biittner, Wolf, Buettner & Theis,
Nature Methods 13, 845 (2016)
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Inferring gene regulation from single-cell data

e Infer causal structure of
gene regulation.

e Given a high-dimensional
stochastic process, infer

couplings among variables.

Diffusion pseudotime Branch 1

Branch 2
—_

NIRRT DT WME  Population index

Gene
expression
10
5
Egil7 0
-0
IIE‘V” Not observed
dh5
a
a1 f
s kb Gene
TR TINE 11 L Gfi1 dynamics
2 Myb -
| ey Gatat & Activation
D Meist v Deactivation
HI R —— HbbbH1
a ligazb
Tl Broor
Bk S ks
tv6
FoxH1
FoxO4
T I HoxB2
HoxD8
Mecom

Cell-state
composition

Terminal Terminal
branch 1 branch 2

Precursor Decision
stage stage

Haghverdi, Biittner, Wolf, Buettner & Theis,
Nature Methods 13, 845 (2016)
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Time series data
Consider a d-dimensional time series (X;), for example

Xi-21 > X@p-1ny1 —> Xn

X(t—2)2\X(t—1)2\i Xio
\ \

X(t-2)3 X(t-1)3 Xi3
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Time series data
Consider a d-dimensional time series (X;), for example

Xit—21 > X@-11 — Xn Xinn=Xi-11+ Nu
X(t—2)2\X(t—1)2\§ Xio Xig = Xy—1)2 + Ni2

\ \ o
Xit-23  X@-13 X3 X3 = X111 N X—1)2 + Nes

One approach is Transfer Entropy, which is conditional mutual
information Schreiber, PRL 85, 461 (2000) (N Granger Causality Granger, Econometrica 37, 424(1969))

TEimj = Mlx, ,ix,0s
= Hth\S - Hth|X(t—1)ivs
where originally, S = X(;,_);, and later S = {all observed variables}.

21/25



Limitations of Transfer Entropy and Granger Causality

e Conditioning on all variables leads to terrible curse of dimensionality.
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Limitations of Transfer Entropy and Granger Causality

e Conditioning on all variables leads to terrible curse of dimensionality.

e Say Xj, X9 ~ Ber(0.5), and X3 = X7 + X5. Then X3

X1 Xo | X3.

> Granger Causality and Transfer Entropy yield information flow
X(t—1)1 = Xi2. But it's non-causal, i.e. non-physical!

Xi—2)1 > Xpg-1)1 — Xy

X(t-2)2 \Xt 1) \KXISQ

X(t-2)3 X(t-1)3 X3

> Need something different!
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1. Start with a fully connected graph.

2. Reduce edges by conditional independence tests.

SGS Test all combinations and conditions X; 1L X;|S.
PC(a) Test X; AL X]|®
(b) On remaining edges and connected components, test
X I X5 Xk,
(c) And so forth.

3. Orient edges, where possible.

e Doesn't work in gene expression time series as there is not enough
dynamic noise.

> In addition to statistical association among variables, test for functional
relation. > Geometry of data plays role. woif & Theis,in preparation (2016)
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I ntegrati ng on the gra ph Wolf, Fischer & Theis, in preparation (2016)

dXy Xo 1
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I ntegrati ng on the gra ph Wolf, Fischer & Theis, in preparation (2016)

A d;iozlf}oHle_XﬁNO::%
dX X 1
d dt1:1+1X11+X0_X1+N1::V1
§ \ / Statistical model V'
» v, = > apXip+ 8
k

Dynamics induced by V?

]

For the stochastic-mechanistic model, X () = X + fg dt V().
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I ntegrati ng on the gra ph Wolf, Fischer & Theis, in preparation (2016)

A d;iozlf}olel_XﬁNO::%
dX X 1
V' & Sirmiex, NN
§ \ / Statistical model V'
» v, = > apXip+ 8
k

Dynamics induced by V?

Lo
For the stochastic-mechanistic model, X () = X + fg dt V().
For the statistic model V, “integrate on the graph”
Agiz; = ,/\/’(a:i\c“c'i(wj),UQ) (Markov Model)
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e Dynamical Mean-Field Theory: learn something about a lattice problem
from a single cluster.

e Graphical Models in Machine Learning: exact factorization of
high-dimensional distribution wich applications, for example, in causal
inference.

Thanks to U. Schollwock!

Thank you!
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