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Problem figures from Jonas Peters

Gene A and gene B both correlate with a phenotype.
> What is the best prediction for the phenotype if we delete a gene?
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Gene A and gene B both correlate with a phenotype.
> What is the best prediction for the phenotype if we delete a gene?
> It certainly depends on the “causal structure” of the system.
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> To describe the interventional distribution, a predictive model needs to
incorporate the causal structure of the system.

How trustworthy is a given Machine Learning model? > Ribeiro, Singh & Guestrin, arXiv:1602.04938 (2016)
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Predictive models

> To fit the observational data, we need
Y =f(Xa,Xp)+N | @.

Predicts wrong interventional distribution.
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Predictive models
> To fit the observational data, we need
Y =f(Xa,Xp)+N | @.
Predicts wrong interventional distribution.
> To describe the interventional data, we'd rather set
Y = f(Xa)+N | do(Xp=0).

Fails to describe observational distribution. Most likely, it's also terribly
wrong in quantifying the effect of X4 on Y.

> Measure the confounder X, and assume there are no further
confounders. Then,

Y:f(XA,Xc)—l-N ‘ o or dO(XB:()).

is a predictive model, which fits both observational and
interventional data. Some people call it “causal model”.
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Graphical models

Visualize cause-effect relations. @ @

This “looks" like a directed acyclic graphical (DAG) model, which is a
conditional independence structure that encodes

X; 1L NonDescendants(X;) | Parents(X;). (Markov property)

If we specify the functional form that generates the distribution as
Xi = fi(Pa(X;), Vi),

we call the DAG structural equation model.
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Observational distribution (Markov factorization)

d

d
p(X1,..., Xq) = [[p(Xi[Pa(X)) = TN (Xil fi(Pa(X2)), 0%)
=1

i=1

Interventional distribution (“surgery on the graph")
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Relation to causality
Observational distribution (Markov factorization)

d

d
p(X1,..., Xa) = [ [ p(Xi[Pa(X; :gH (Xi| fi(Pa(Xy)), o)

i=1

Interventional distribution (“surgery on the graph")

p(X1,..., Xq4|do(X; = z;)) Hp (X;i|Pa(X. = x;)
i#]

e Correct interventional distributions are only obtained from the
observational distribution, if all edges denote cause-effect relationships.
> The likelihood for interventional data is highly sensitive to non-causal

edges.

> The model can efficiently be learned and easily falsified.
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Maximize the likelihood or posterior of a graphical model.
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Structure Learning

How to learn conditional independence structure from data?

e Constraint-based methods. pearl & Verma (1991) Spirtes, Glymour & Scheines (2000)
Perform systematic conditional independence tests.
+ PC algorithm scales well to large dimensions.
+ Consistency results exist.
— “Not very reliable”.
— Not a generative method.
— Problematic in the presence of hidden variables.

e Score-based methods. chickering (2002)
Maximize the likelihood or posterior of a graphical model.
— Does not scale.
— Consistency results only in low dimensions.
+ “More reliable”.
+ Generative method.
+ Bayesian ansatz allows to resolve hidden variables.
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SGS a nd PC a Igorith m Spirtes, Glymour & Scheines (2000)

PC algorithm is most popular constraint-based method.

1. Start with a fully connected graph.
2. Reduce edges by conditional independence tests.

SGS Test all combinations and conditions X; 1L X;|S.
PC(a) Test X; 1 X;|@.
(b) On remaining edges and connected components, test
X I X5 Xk,
(c) And so forth.

3. Orient edges, where possible: colliders.

Greedy equivalence search cuiciering o02)

GES is most popular score-based method.

1. Start with an empty graph.

2. Greedily add edges by computing a score, usually the likelihood.
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e A distribution is faithful to the graph G, if there are no other
independence relations than those encoded in the graph.
> All variable couplings in the distribution lead to statistical association.
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Note: Faithfulness and Biological Networks

e A distribution is faithful to the graph G, if there are no other
independence relations than those encoded in the graph.
> All variable couplings in the distribution lead to statistical association.

One can easily construct distributions that do not show statistical
associations between coupled variables. For example,

Y = (X1 AXo) V(X1 AXs), Xi,Xo~ Ber(0.5),
implies
Y I X, Y I Xos.
Then, only the interventional distribution shows association
Y = X; | do(X2=0), X;~ Ber(0.5).

> Aside from unmeasured confounders, violated faithfulness poses the
strongest limitation to causal conclusions in biology.



Time series data
Consider a d-dimensional time series Xy;, for example

Xu = Xg-11+Na
Xig = Xy—1)2 + Niz

Xiz = Xp—1)1 A X(t—1)2 + Ni3
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Time series data
Consider a d-dimensional time series Xy;, for example

Xy = X(t_1)1 + Nu X(t—2)1 - X(t—l)l — X

Xz = X(1-1)2 + Ne2 X(t—2)2\\f((t—1)2\<A Xi2
_ ~ ~a

X3 = X(t—l)l A X(t—1)2 + N3 X(t—2)3 X(t—l)3 X3
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Time series data
Consider a d-dimensional time series Xy;, for example

Xy = X(t_1)1 + Nu X(t—2)1 - X(t—l)l — X

Xig = X(—1)2 + Ni2 X(t—z)zx\AX(t—1)2\<A X2
_ ~ ~a

X3 = X(t—l)l A X(t—1)2 + N3 X(t—2)3 X(t—l)3 X3

e Time ordering resolves directions on the graph!

> Here: Xio I X(y_1)3]| X (1—1)2, but Xez W X(4_1)2| X (1—1)3-

e Granger Causality and Transfer Entropy correspond to specific tests
in the PC algorithm, but get the example above wrong.
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Inferring gene regulation from single-cell data
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Inferring gene regulation from single-cell data

Structure learning on gene expres-
sion pseudotime series is hard.

e Few dynamic noise. Relatively
non-informative Hill kinetics.

> Use global geometric properties
of the data.

> Developed PC algorithm with
tests of functional relations in-
stead of statistical associations.
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e Learning the structure of undirected graphical models is easier than

learning DAG structure because we don't need to worry about acyclicity.

e It is harder than learning DAG structure since the likelihood does not
decompose, i.e. no greedy technique can be employed. Only in the
Gaussian case, there is an immediate solution.

Gra ph|Ca| LaSSO Friedman, Hastie & Tibshirani, Biostatistics 9, 432 (2008)
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—_———

—loglikelihood sparsity prior

The precision matrix 37! receives an L prior.

> Limitations: Gaussian data. No causal interpretation.
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Learning undirected Gaussian graphical models

e
4 ":’I/I“\
o LN

Y|

S
NN

L1 norm=2.27182 L1 norm= 0.08915 L1 norm= 0.04251

data from Sachs, Perez, Pe'er, Lauffenburger & Nolan, Science 308, 523 (2005)
Gra ph |Ca| LaSSO Friedman, Hastie & Tibshirani, Biostatistics 9, 432 (2008)

cost(E71) = —logdet(Z71) + tr(SZ) + A|[Z Y|
—_———

—loglikelihood sparsity prior

The precision matrix 37! receives an L prior.

> Limitations: Gaussian data. No causal interpretation.
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Learning undirected Gaussian graphical models

Krumsiek, Suhre, lllig, Adamski & Theis, BMC Systems Biology 5, 21 (2011)

Graphical Lasso Friedman, Hastie & Tibshirani, Biostatistics 9, 432 (2008)

J

cost(B7Y) = —logdet(E71) + tr(SZ) + \||Z7Y||;
~ ———
—loglikelihood sparsity prior
The precision matrix X! receives an L; prior.

> Limitations: Gaussian data. No causal interpretation.
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Causal Inference

There are two problems known as “causal inference”. shaiizi, chap. 25 (2016)

e Given data about a system, find its causal structure.

e Given the causal structure of a system, estimate effects variables have
on each other.

We mostly talked about the first topic, because it's “more related to
machine learning”.

Note: Very often, people estimate causal structure from subject knowledge.

12 /14
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Estimate effects variables have on each other

Backdoor criterion

How to compute a causal effect in this graph?

Block all causal pathways by conditioning on a @
the right set of variables S = {5, S2}. “

p(Y]do(X)) = Y p(Y[X,S = s)p(S = 5) '

> Propensity scores. Q

Instrumental variables
You have no clue how to block all causal path-

ways, but you have some “external” way of ‘@

varying X. Then

~ Cov(1,Y)
b= Cov(I, X)’ G
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Estimate effects variables have on each other

> Randomization: I is coin toss that assigns treatment.

> Mendelian randomization, e.g. to investigate causal effect of Gene
Expression on Metabolite Level

= Cov(SNP, MetaboliteLevel)
~ Cov(SNP, GeneExpression)

Shin, Fauman, Petersen, Krumsiek & et al., Nature Genetics 46, 543 (2014)

Instrumental variables
You have no clue how to block all causal path-
ways, but you have some “external” way of a‘@

varying X. Then

~ Cov(1,Y)
b= Cov(l,X)’ G

13 /14



Summary

Directed graphical models can be used to “organize” causal reasoning.

14 /14



Summary

Directed graphical models can be used to “organize” causal reasoning.

> Inference using constraint or score based methods.

14 /14



Summary

Directed graphical models can be used to “organize” causal reasoning.

> Inference using constraint or score based methods.

> Time series data helps identifying causal directions.

14/14



Summary

Directed graphical models can be used to “organize” causal reasoning.

> Inference using constraint or score based methods.

> Time series data helps identifying causal directions.

> Have the potential to improve on inference of biological networks?
Sachs, Perez, Pe'er, Lauffenburger & Nolan, Science 308, 523 (2005)
Maathuis, Colombo, Kalisch & Biihlmann, Nature Methods 7, 247 (2010)

Hill et al., Nature Methods 13, 310 (2016)

14/14



Summary

Directed graphical models can be used to “organize” causal reasoning.

> Inference using constraint or score based methods.

> Time series data helps identifying causal directions.

> Have the potential to improve on inference of biological networks?
Sachs, Perez, Pe'er, Lauffenburger & Nolan, Science 308, 523 (2005)
Maathuis, Colombo, Kalisch & Biihlmann, Nature Methods 7, 247 (2010)

Hill et al., Nature Methods 13, 310 (2016)

Thank you! Thanks to Fabian and all
members of |CB-ML!
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TEio; =Mlx, ,):x,s
= Hthls - Hth‘X(t—l)izs

where originally, S = X(;,_);, and later S = {all observed variables}.

e Granger Causality is “almost the same”

GC%*}] = log(ZX“'S) - log(zxtj|X(t71)i7S)7

we just measure uncertainty by covariance instead of entropy. In the
Gaussian case, GC is equivalent with TE. samett, Barrett & Seth, PRL 103, 238701 (2009)

> Estimators for Ml (in the Gaussian case, partial correlation) are popular
for measuring conditional independence — their computation amounts
to evaluating a single test in the PC algorithm.
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Limitations of Transfer Entropy and Granger Causality

e Conditioning on all variables leads to a terrible curse of dimensionality.
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e Say X1, X2 ~ Ber(0.5) describe the expression of two independent
genes, and X3 = X; + X5 their sum. Then X3 is a collider in the graph

X1 Xo| X5. (compare “selection bias")

> Granger Causality and Transfer Entropy yield an information flow
X(t—1)1 = Xi2. But it’s non-causal, i.e. not helpful for prediction!

Xi—21 > Xi-1n1 —> Xn

X(t-2)2 \Xt 12\<{th

X(t 2)3 -1)3 Xy3
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Limitations of Transfer Entropy and Granger Causality

e Conditioning on all variables leads to a terrible curse of dimensionality.

e Say X1, Xo ~ Ber(0.5) describe the expression of two independent

genes, and X3 = X7 + Xy their sum. Then X3 is a collider in the graph

X1 Xo|X5. (compare “selection bias")

> Granger Causality and Transfer Entropy yield an information flow
X(t—1)1 — Xi2. But it's non-causal, i.e. not helpful for prediction!

Xi—2)1 > Xg—1)1 — Xy

X(t—2)2 \Xt 1) \ith
X

X(t-2)3 1)3 X3

e General Note: Time Series data very helpful to resolve directions!
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COl |ege ad m iSSion exam ple Heckerman, Meek & Cooper (1997)

i

log p(Dm,) = -45653 log p(Dm,) = 45699
pm,ID)=1.0 p(m,D)=12x107"

e PC algorithm chooses second most likely model! After it decides that
SEX and 1Q are marginally independent, it never considers the
independence of SEX and IQ given PE.
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e PC algorithm chooses second most likely model! After it decides that
SEX and 1Q are marginally independent, it never considers the
independence of SEX and IQ given PE.

e Most of the most likely model seems plausible in terms of a causal
interpretation. The direct influence of SES on IQ though is likely to be
due to a hidden common cause, e.g. IQ of parents.
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COl |ege ad m iSSion exam ple Heckerman, Meek & Cooper (1997)

PE H_ p(IQ=highlPEH) B pSPStighth
f——— — PEElE ) L p(male) =048 0 0.088

low 0 0.098 1 051

low 1 022 -

high 0 021

high 1 049 @

° p(H=0) = 0.63
p(H=1)=037

SES Q PE  p(CP=yesISES IQPE)
low low low 0011

SES  SEX p(PE=highlSES SEX) low low high 0.170
low  high  low 0.124

low  male 032 low  high  high 0.53

low  female 0.166 high  low low 0093

high  male 0386 high  low  high 039

high  female 081 log p(m | D) = -45629 high  high  low 024
high  high  high 084

e PC algorithm chooses second most likely model! After it decides that
SEX and 1Q are marginally independent, it never considers the
independence of SEX and IQ given PE.

e Most of the most likely model seems plausible in terms of a causal

interpretation. The direct influence of SES on IQ though is likely to be
due to a hidden common cause, e.g. |Q of parents.
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