Theoretical Systems Biology Retreat
(German Cancer Resarch Center, Heidelberg)
Ellwangen · 22 June 2016
▷ Learn about gene regulation?
Model fitting
Granger Causality/Transfer Entropy
Causal Inference Methods
Convergent Cross Mapping
Model fitting
Granger Causality/Transfer Entropy
Causal Inference Methods
Convergent Cross Mapping
Conditional independence tests: $$ X_{ti} \perp\!\!\!\perp X_{(t-1)j} \;|\; X_{(t-1)k_1}, X_{(t-1)k_2}, ... $$
Model fitting
Granger Causality/Transfer Entropy
Causal Inference Methods
Convergent Cross Mapping
Idea: Reconstruct regulating gene from the history of the regulated gene.
Idea: Reconstruct regulating gene from the history of the regulated gene.
▷ Can exploit branching geometry!
▷ But: no statistical formulation!
Rationale
\begin{align} X_{tj} & = f_j(X_{(t-1)j}, X_{(t-1)i_1}, X_{(t-1)i_2}, ...) \\ \Leftrightarrow \quad & F_j(X_{tj},X_{(t-1)j}, X_{(t-1)i_1}, X_{(t-1)i_2}, ...) = 0 \end{align}Statistically test whether $X_{(t-1)i_1}$ contributes to $F_j$ by testing for the existence of a function $g$ $$ g(X_{tj},X_{(t-1)j}, X_{(t-1)i_2}, ...) = X_{(t-1)i_1}. $$
Implicit function theorem: if there is no $g$, $F_j$ is constant w.r.t $X_{(t-1)i_1}$.
Consider $X_{tj} = f_j(X_{(t-1)j},X_{(t-1)i})$. How to statistically test for the existence of mapping the $g : \mathcal{X}_j \rightarrow \mathcal{X}_i ?$
$$ z_{ji} = \frac{\overline{\Delta}_{ji} - \overline{\delta}_{i}}{\sqrt{(\hat\sigma_{ji}^{\Delta})^2/n + (\hat\sigma_{ji}^{\delta})^2/n}}$$ where $$ \Delta_{tji}^{(a)} = \frac{1}{|{\mathcal{N}}_{tj}^{(a)}|} \sum_{t' \in {\mathcal{N}}_{tj}^{(a)}} d_{tt'i} $$ is the variation across realizations for a fixed value in the domain $\mathcal{X}_j$ $$ {\delta}_{ti}^{(a)} = \frac{1}{2}({d}_{t(t-1)i}^{(a)} + {d}_{(t+1)ti}^{(a)}) $$ is the dynamic variation in the codomain.