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Outline

> MPS / Tensor Trains in statistical physics

> MPS in quantum mechanics
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Generic example (i): noninteracting 1d Ising model

X1 X2 XN

System described by vector of random variables X € {0, 1}* with joint
probability mass function

N

L
p@) =4 @M Hz) =Y ",
n=1

normalized with Z = 3" _ e~ H@)/T

x
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Generic example (i): noninteracting 1d Ising model

X1 X2 XN

System described by vector of random variables X € {0, 1}* with joint
probability mass function

L
n=1
normalized with Z = 3" e~ (@)/T

> p has 2 components x € {(0,0, ...,0), (0,0, ...,1),... }.
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Generic example (i): noninteracting 1d Ising model

X1 X2 XN

System described by vector of random variables X € {0, 1}* with joint
probability mass function

normalized with Z =" _ e H@)/T
> p has 2© components = € {(0,0, ...,0), (0,0, ...,1),... }.

> Remark 2100 ~ 1030 ~ 10!® TB.




Generic example (i): noninteracting 1d Ising model

X1 X2 XN

Compute correlations via cov(X,,, X;,) = (X5 Xm) — (Xn)(Xn).

<XnXm> = Z TnImPex
ac
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Generic example (i): noninteracting 1d Ising model

X1 X2 XN

Compute correlations via cov(X,,, X;,) = (X5 Xm) — (Xn)(Xn).

T

> Naive brute force: 2° operations necessary.

> Monte Carlo: sampling in space of 2% states.
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Generic example (i): noninteracting 1d Ising model

X1 X2 XN

But: non-interacting degrees of freedom X,, imply full separability
<L
p:l: — pl‘l,l‘g,...,Z‘L — %e Zn:l xn/T

=LA Ay Ay, Ay, =e /T

n
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Generic example (i): noninteracting 1d Ising model

X1 X2 XN

But: non-interacting degrees of freedom X,, imply full separability
— 1 *25:1 xn /T
p:l: - pxl,xg,...,Z‘L - Ze
—x,/T
=LA Apy . Ay, Ay, =™
Compute correlations in 2L operations . ..
L

o) = g (Snde,) (Lomaen) I1 (L)

k#nm Tk

= (Xn)(X;m) ... there are none.
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Generic example (ii): interacting 1d Ising model

X] X2 vos Y

«C——C—C—+<—

L-1
L H@IT - Ha) = =3 2pann
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Generic example (ii): interacting 1d Ising model

X: X2 ..

o e XN
€—€—6—€€E—¢

L—-1
n=1

> Is just a “discrete Gaussian” (continuous if X,, € R) with

0
0

OHN O

cov(z,y) ! = 2
T

o O O
TN o

> Correlations by inverting or diagonalizing the covariance matrix.
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Generic example (ii): interacting 1d Ising model

X: X2 ..

e e XN
€—€—€—€—€—€—€

But: two-body interactions imply “almost — separability”
2Y P = Y mmT /T
x x

where gsum is the grand sum.
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Generic example (ii): interacting 1d Ising model

X; X

—e—i—i—i—i—¢

But: two-body interactions imply “almost — separability”
ZZﬁz = ZA:ELIQAM,IS s
x x

where gsum is the grand sum.
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Generic example (ii): interacting 1d Ising model

X: X2 ..

e e XN
€—€—€—€—€—€—€

But: two-body interactions imply “almost — separability”

Z> Pr=Y_ AuiasArss -
x x

=gsumAA..., A i = etntntt/T 4 g R2X2

where gsum is the grand sum.
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Generic example (ii): interacting 1d Ising model

1 X
—e—i—6—i—i—¢
But: two-body interactions imply “almost — separability”

Z> Pr=Y_ AuiasArss -
T xT

=gsumAA..., Ay i = etnmntt/T g g R2X2

where gsum is the grand sum.

> Compare to non-interacting case

ZY pe=3 ApAay..., Ay, =e /T
T T
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Generic example (ii): interacting 1d Ising model

X] X2 vos Y

C—€—€C—€—<—

Compute correlations in 23L operations (L matrix products)

m—1

(KXo} = ;gmkr:[ (4 T] ( A[kl)ME (41)

k=n

where M = < 1

0

0 -1

)
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Generic example (ii): interacting 1d Ising model

X] X2 vos cee

C—€—€C—€—<—

Compute correlations in 23L operations (L matrix products)

(XnXm)p = ;gsumj_ji (A[k]>MZij: (A[’f])M:ZI:}[i (A[k‘})

1 0
where M—<O _1>

> Compare to non-interacting case (2L operations)

Xl = 7 (e, ) (S mn.) T1 (L)

k#nm T
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Generic example (iii): three-body interacting Ising model

X1 X2 ...
ﬁa: = % B (m)/T’ H(:B = Zﬂjnl‘n—&-lxn—i—?

n=1
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Generic example (iii): three-body interacting Ising model

X1 X2 XN
€€ 6 1

L—2
~ 1 _—H T
Dz = 7€ @)/ s H(:B) = - § TnTn+1Tn+2
n=1
Agn@nir,@nsa = ernans1nt2/T
75 he- 3 114 e
Pz Ty Tr41,Tnt2 A € R2X2x2

x n=1

16



Generic example (iii): three-body interacting Ising model

X1 X2 XN
€€ 6 1

L—2
Pz = %eiH(m)/T, H(:l:) = — Z TnTn+1Tn+2
n=1
Axn,x7L+17fEn+2 = ePn@nt1Tni2/T
ZZP:B = zm: }_[1 Az nit,mnse A € R2X2x2
B A

Z H B Bt ) 2Tn i1+ T2 = AT, Tnt1,Tnt2
= ’
n+1 n+1’$n+2 B c R2X4

x’ n=1
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Generic example (iii): three-body interacting Ising model

X1 X2 XN
€€ 6 1

L—2
~ 1 _—H(x)/T
Dz = 7€ @)/ s H(:B) = - § TnTn+1Tn+2
n=1
Aﬂcn,xn+1,xn+2 _ exnxn+1:cn+2/T
Zzpw N Z H Aznwnironis A € R2x2%2
x n=1 S
Z H B Bt Bx%,2$n+1+l‘n+2 = Axn,$n+17xn+2
- !
n+1 n+1’$n+2 2x4
— 11 BeR

Tensor Train format > 3(23 + 4%) L operations
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Summary Part |

> Write probability mass function
p:{0,1,...d}t - F, d,LeN

as vector .
pe =p(x), peF

that is indexed and parametrized by = € {0,1,...,d}".

6
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Summary Part |

> Write probability mass function
p:{0,1,...d}t - F, d,LeN

as vector i
pr =p(x), pEF
that is indexed and parametrized by = € {0,1,...,d}".

If p = v(x) does not couple all index components x,, among each
other, there is a low rank MPS/TT representation.
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> Write probability mass function
p:{0,1,...d}t - F, d,LeN

as vector i
pr =p(x), pEF
that is indexed and parametrized by = € {0,1,...,d}".

If p = v(x) does not couple all index components x,, among each
other, there is a low rank MPS/TT representation.

This reduces computational cost in summations over the p(x) from
exponential to linear in system size.
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Summary Part |

> Write probability mass function
p:{0,1,...d}t - F, d,LeN

as vector i
pr =p(x), pEF
that is indexed and parametrized by = € {0,1,...,d}".

If p = v(x) does not couple all index components x,, among each
other, there is a low rank MPS/TT representation.

This reduces computational cost in summations over the p(x) from
exponential to linear in system size.

> How to use this in quantum mechanics?
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Outline

> MPS / Tensor Trains in statistical physics

> MPS in quantum mechanics

7/16



Statistical Mechanics — Quantum Mechanics
Instead of considering sums over classical weights, as in the partition sum,

1= me = Z<m|ﬁm|w>v

where we used a somewhat exaggerated notation.
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Statistical Mechanics — Quantum Mechanics
Instead of considering sums over classical weights, as in the partition sum,

1= me = Z<m|ﬁm|w>v

where we used a somewhat exaggerated notation. We now consider
quantum many-body states

) = eola),

where |z) = |21) ® [22) ® - - ® |zL) = |x122...2) is a tensor product of
single-particle basis states |x;). For example

lzi) € {| 1), | 4a)}
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Statistical Mechanics — Quantum Mechanics
Instead of considering sums over classical weights, as in the partition sum,

1= me = Z<m|ﬁm|w>v

where we used a somewhat exaggerated notation. We now consider
quantum many-body states

) = eola),

where |z) = |21) ® [22) ® - - ® |zL) = |x122...2) is a tensor product of
single-particle basis states |x;). For example

lzi) € {| 1), | 4a)}

> But, do we know anything about how the vector of coefficients c,,
couples its components, so that the matrix product format is
applicable?

8/16



For now we don’t have to! Simply try the ansatz!
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For now we don’t have to! Simply try the ansatz!

> We can e.g. simply do a mean-field theory! Let us assume

! )
ce =a"'a"™...ad"t = | |a$1
i

then state can be manipulated doing ~ L operations

®
) =3 cale) £ o) = Y- [T a™le) = [T (X a0

1
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For now we don’t have to! Simply try the ansatz!

> We can e.g. simply do a mean-field theory! Let us assume

! )
ce =a"'a"™...ad"t = | |a$1
i

then state can be manipulated doing ~ L operations

®

) =3 cale) £ o) = Y- [T a™le) = [T (X a0

i
> How to determine the coefficients A*? Variationally solve

YL Oy

(Y1)

> Approximation to ground state. Approximation is good if ground
state is in the same class of states as the ansatz |{mE).
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What is a matrix product state? Schollwck, arXiv:1008.3477 (2011)

> Relax mean-field assumption for coefficients of many body states

Cx *a“a“a ..a“:Haxi

to one that factorizes in matrices

o=y ADAT, AT AT =] A

vive - Trevs ¢t
{vi}
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What is a matrix product state? Schollwck, arXiv:1008.3477 (2011)

> Relax mean-field assumption for coefficients of many body states
41,22 rr ZT;
cy = a"ta®?a®? ... a"F = Ha
to one that factorizes in matrices

o=y ADAT, AT AT =] A

vive - Trevs ¢t
{vi}

> An MPS can be manipulated with costs of LD?3, where D is the
dimension of the matrices A%

¥) =D cala) = [1hups) = ZHAILIQC
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What is a matrix product state? Schollwck, arXiv:1008.3477 (2011)

> Relax mean-field assumption for coefficients of many body states

Cx *a“a“a ..axL:Haxi

to one that factorizes in matrices

o=y ADAT, AT AT =] A

vive - Trevs ¢t
{vi}

> An MPS can be manipulated with costs of LD?3, where D is the
dimension of the matrices A%

¥) =D cala) = [1hups) = ZHA“”IQC

> Are ground states in the same class as MPS? Which is this class?
Are the coefficients ¢, in ground states weakly coupled?
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Class of IOle entangled states Eier, arxiv:1308:3318 (2013)

Many natural quantum lattice models have ground states that are little, in
fact very little, entangled in a precise sense. This shows that “nature is
lurking in some small corner of Hilbert space”, one that can be essentially
efficiently parametrized.

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
= @== @ @ @ @@= @==@
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

Gapped Hamiltonians with short range interactions.
> Physical correlations have a finite range.

> Entanglement fulfills area law: entanglement of a region A is
proportional to surface |0A|, not volume |A|, of this region.
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For a one-dimensional system? Schollwéck, arXiv:1008.3477 (2011)

looooooo0oo0o0/ooo0oo0o000
1 (¢ 1+1 L

) =D My ,aplwa)lzs)

A TR
Perform SVD (singular value decomposition) M = USV'

> UTU =1 and VVt =1, ie U and V have columns of orthonormal
vectors

> S is diagonal matrix

) =3 sulv) alv) s

v

where (V)4 =3, Uz,lTa) and [v)p =3, Vi, . |TB)

12 /16



For a one-dimensional system? Schollwéck, arXiv:1008.3477 (2011)

l]oooooooo0oo0jo0oo0o00o0o0
1 ¢+l L

Reduced density operators are readily obtained from

) =3 sulv) alv) s

v

as trace over subsystem B can be performed easily

pa = trp|) (Y] = ZSV|
Entanglement between A and B

2 [n 2
Sap = —trpalnpa = Zsy Ins;,
12
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Relation with matrix product state? Schollwéck, arXiv:1008.3477 (2011)

looooooo0oo0o0/ooo0oo0o000
1 (¢ 1+1 L

) = 3 sulv)ali)s

where V)4 =35, Uz vl@a) and [v)p =3, Vo, |2B)

l L
[omes) = > > 1A% [ A% l=a)les)

x) xp i=1 j=I+1
l L
=SS e S I 4) e
v xa i=1 g j=l+1

g

~|v)a ~|v) B, up to unitary transform

14 /16



Relation with matrix product state? Schollwéck, arXiv:1008.3477 (2011)

looooooo0oo0o0/ooo0oo0o000
1 (¢ 1+1 L

) = 3 sulv)ali)s

> As v € {1,..., D}, the matrix dimension D directly translates into
number of allowed singular values, and by that the number of
summands in the entanglement entropy!

212
Sap = —trpalnpa = Zsy Ins;,
v

> Mean-field states with matrix dimension 1 are not entangled!
> Everything up to D=1000 is easily treatable on a computer.
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Summary

Sufficiently lowly entangled states can be efficiently represented by matrix
product states. Fortunately, most physically relevant states are very lowly
entangled.

> DMRG: Variational ground state search

_(lHY)
)

solved efficiently as ansatz is linear in A%

> Invention of DMRG: white, Phys. Rev. Lett. 69 2863 (1992)

> ReVieWS: Schollwdck, Rev. Mod. Phys. 77, 259 (2005) / Schollwdck, Annals of Physics 326, 96 (2011)
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Summary

Sufficiently lowly entangled states can be efficiently represented by matrix
product states. Fortunately, most physically relevant states are very lowly
entangled.

> DMRG: Variational ground state search

_(lHY)
w )

solved efficiently as ansatz is linear in A%

> Invention of DMRG: white, Phys. Rev. Lett. 69 2863 (1992)

> ReVieWS: Schollwdck, Rev. Mod. Phys. 77, 259 (2005) / Schollwdck, Annals of Physics 326, 96 (2011)

Thank you for your attention!

16
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