Matrix Product States: defeating the curse of dimensionality

F. Alexander Wolf

Arnold Sommerfeld Center for Theoretical Physics, LMU Munich

Columbia University, 23 Apr 2015

MUNICH QUANTUM

Outline

▷ MPS / Tensor Trains in statistical physics

 \triangleright MPS in quantum mechanics

System described by vector of random variables $X \in \{0, 1\}^L$ with joint probability mass function

$$p(\boldsymbol{x}) = \frac{1}{Z}e^{-H(\boldsymbol{x})/T}, \quad H(\boldsymbol{x}) = \sum_{n=1}^{L} x_n$$

normalized with $Z = \sum_{\boldsymbol{x}} e^{-H(\boldsymbol{x})/T}$.

System described by vector of random variables $X \in \{0,1\}^L$ with joint probability mass function

$$\boldsymbol{p}_{\boldsymbol{x}} = \frac{1}{Z} e^{-H(\boldsymbol{x})/T}, \quad H(\boldsymbol{x}) = \sum_{n=1}^{L} x_n$$

normalized with $Z = \sum_{\boldsymbol{x}} e^{-H(\boldsymbol{x})/T}$.

Dash p has 2^L components $oldsymbol{x} \in \{(0,0,...,0),(0,0,...,1),\ldots\}.$

System described by vector of random variables $X \in \{0, 1\}^L$ with joint probability mass function

$$\boldsymbol{p}_{\boldsymbol{x}} = \frac{1}{Z} e^{-H(\boldsymbol{x})/T}, \quad H(\boldsymbol{x}) = \sum_{n=1}^{L} x_n$$

normalized with $Z = \sum_{\boldsymbol{x}} e^{-H(\boldsymbol{x})/T}$.

 $hinspace{p} m{p} \ {\sf has} \ 2^L \ {\sf components} \ m{x} \in \{(0,0,...,0), (0,0,...,1),\dots\}.$

 \triangleright Remark $2^{100} \simeq 10^{30} \simeq 10^{15}$ TB.

Compute correlations via $\operatorname{cov}(X_n, X_m) = \langle X_n X_m \rangle - \langle X_n \rangle \langle X_n \rangle$.

$$\langle X_n X_m \rangle = \sum_{\boldsymbol{x}} x_n x_m \boldsymbol{p}_{\boldsymbol{x}}$$

Compute correlations via $\operatorname{cov}(X_n, X_m) = \langle X_n X_m \rangle - \langle X_n \rangle \langle X_n \rangle$.

$$\langle X_n X_m \rangle = \sum_{\boldsymbol{x}} x_n x_m \boldsymbol{p}_{\boldsymbol{x}}$$

 \triangleright Naive brute force: 2^L operations necessary.

 \triangleright Monte Carlo: sampling in space of 2^L states.

But: non-interacting degrees of freedom X_n imply full *separability*

$$p_{x} = p_{x_{1}, x_{2}, \dots, x_{L}} = \frac{1}{Z} e^{-\sum_{n=1}^{L} x_{n}/T}$$
$$= \frac{1}{Z} A_{x_{1}} A_{x_{2}} \dots A_{x_{L}}, \quad A_{x_{n}} = e^{-x_{n}/T}$$

But: non-interacting degrees of freedom X_n imply full separability

$$p_{x} = p_{x_{1}, x_{2}, \dots, x_{L}} = \frac{1}{Z} e^{-\sum_{n=1}^{L} x_{n}/T}$$
$$= \frac{1}{Z} A_{x_{1}} A_{x_{2}} \dots A_{x_{L}}, \quad A_{x_{n}} = e^{-x_{n}/T}$$

Compute correlations in 2L operations ...

$$\begin{split} \langle X_n X_m \rangle &= \frac{1}{Z} \Big(\sum_{x_n} x_n A_{x_n} \Big) \Big(\sum_{x_m} x_m A_{x_m} \Big) \prod_{k \neq n,m}^L \Big(\sum_{x_k} A_{x_k} \Big) \\ &= \langle X_n \rangle \langle X_m \rangle \quad \dots \quad \text{there are none.} \end{split}$$

 \triangleright Is just a "discrete Gaussian" (continuous if $X_n \in \mathbb{R}$) with

$$\operatorname{cov}(\boldsymbol{x}, \boldsymbol{y})^{-1} = \begin{pmatrix} 0 & \frac{2}{T} & 0 & \dots & 0\\ \frac{2}{T} & 0 & \frac{2}{T} & \dots & 0\\ 0 & \frac{2}{T} & 0 & \frac{2}{T} & \dots \\ 0 & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$$

> Correlations by inverting or diagonalizing the covariance matrix.

But: two-body interactions imply "almost - separability"

$$Z\sum_{\boldsymbol{x}}\widetilde{\boldsymbol{p}}_{\boldsymbol{x}} = \sum_{\boldsymbol{x}} e^{x_1 x_2/T} e^{x_2 x_3/T} \dots$$

where gsum is the grand sum.

But: two-body interactions imply "almost - separability"

$$Z\sum_{\boldsymbol{x}}\widetilde{\boldsymbol{p}}_{\boldsymbol{x}}=\sum_{\boldsymbol{x}}A_{x_1,x_2}A_{x_2,x_3}\dots$$

where gsum is the grand sum.

But: two-body interactions imply "almost - separability"

$$Z \sum_{\boldsymbol{x}} \widetilde{\boldsymbol{p}}_{\boldsymbol{x}} = \sum_{\boldsymbol{x}} A_{x_1, x_2} A_{x_2, x_3} \dots$$
$$= \operatorname{gsum} AA \dots, \qquad A_{x_n, x_{n+1}} = e^{x_n x_{n+1}/T}, \quad A \in \mathbb{R}^{2 \times 2}$$

where gsum is the grand sum.

But: two-body interactions imply "almost - separability"

$$\begin{split} Z \sum_{\boldsymbol{x}} \widetilde{\boldsymbol{p}}_{\boldsymbol{x}} &= \sum_{\boldsymbol{x}} A_{x_1, x_2} A_{x_2, x_3} \dots \\ &= \operatorname{gsum} A A \dots, \qquad A_{x_n, x_{n+1}} = e^{x_n x_{n+1}/T}, \quad A \in \mathbb{R}^{2 \times 2} \end{split}$$

where gsum is the grand sum.

▷ Compare to non-interacting case

$$Z\sum_{\boldsymbol{x}} \boldsymbol{p}_{\boldsymbol{x}} = \sum_{\boldsymbol{x}} A_{x_1} A_{x_2} \dots, \qquad A_{x_n} = e^{-x_n/T}$$

Compute correlations in $2^{3}L$ operations (L matrix products)

$$\langle X_n X_m \rangle_{\widetilde{p}} = \frac{1}{Z} \operatorname{gsum} \prod_{k=1}^{n-1} \left(A^{[k]} \right) M \prod_{k=n}^{m-1} \left(A^{[k]} \right) M \prod_{k=m}^{L-1} \left(A^{[k]} \right)$$
where $M = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Compute correlations in $2^{3}L$ operations (L matrix products)

$$\langle X_n X_m \rangle_{\widetilde{p}} = \frac{1}{Z} \operatorname{gsum} \prod_{k=1}^{n-1} \left(A^{[k]} \right) M \prod_{k=n}^{m-1} \left(A^{[k]} \right) M \prod_{k=m}^{L-1} \left(A^{[k]} \right)$$
where $M = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

 \triangleright Compare to non-interacting case (2L operations)

$$\langle X_n X_m \rangle_{\boldsymbol{p}} = \frac{1}{Z} \Big(\sum_{x_n} x_n A_{x_n} \Big) \Big(\sum_{x_m} x_m A_{x_m} \Big) \prod_{k \neq n, m} \Big(\sum_{x_k} A_{x_k} \Big)$$

$$A_{x_n, x_{n+1}, x_{n+2}} = e^{x_n x_{n+1} x_{n+2}/T} A \in \mathbb{R}^{2 \times 2 \times 2}$$

$$\hat{\boldsymbol{p}}_{\boldsymbol{x}} = \frac{1}{Z} e^{-H(\boldsymbol{x})/T}, \quad H(\boldsymbol{x}) = -\sum_{n=1} x_n x_{n+1} x_{n+2}$$

$$Z\sum_{\boldsymbol{x}} \hat{\boldsymbol{p}}_{\boldsymbol{x}} = \sum_{\boldsymbol{x}} \prod_{n=1}^{L-2} A_{x_n, x_{n+1}, x_{n+2}}$$

$$A_{x_n, x_{n+1}, x_{n+2}} = e^{x_n x_{n+1} x_{n+2}/T}$$
$$A \in \mathbb{R}^{2 \times 2 \times 2}$$

$$= \sum_{\boldsymbol{x}'} \prod_{n=1}^{L-2} B_{x'_n, x'_{n+1}} B^t_{x'_{n+1}, x'_{n+2}}$$

$$B_{x'_n, 2x_{n+1}+x_{n+2}} = A_{x_n, x_{n+1}, x_{n+2}}$$

$$B \in \mathbb{R}^{2 \times 4}$$

$$=\sum_{\boldsymbol{x}'}\prod_{n=1}^{L-2}B_{x'_n,x'_{n+1}}B^t_{x'_{n+1},x'_{n+2}} \quad B_{x'_n,2x_{n+1}+x_{n+2}} = A_{x_n,x_{n+1},x_{n+2}}$$

Tensor Train format $\triangleright \frac{1}{2}(2^3 + 4^3)L$ operations

▷ Write probability mass function

$$p: \{0, 1, ..., d\}^L \to \mathbb{F}, \quad d, L \in \mathbb{N}$$

as vector

$$\boldsymbol{p}_{\boldsymbol{x}} = p(\boldsymbol{x}), \qquad \boldsymbol{p} \in \mathbb{F}^{d^L}$$

that is indexed and parametrized by $x \in \{0, 1, ..., d\}^L$.

Write probability mass function

$$p: \{0, 1, ..., d\}^L \to \mathbb{F}, \quad d, L \in \mathbb{N}$$

as vector

$$\boldsymbol{p}_{\boldsymbol{x}} = p(\boldsymbol{x}), \qquad \boldsymbol{p} \in \mathbb{F}^{d^L}$$

that is indexed and parametrized by $\boldsymbol{x} \in \{0, 1, ..., d\}^L$.

If $p_x = v(x)$ does *not* couple *all* index components x_n among each other, there is a low rank MPS/TT representation.

Write probability mass function

$$p: \{0, 1, ..., d\}^L \to \mathbb{F}, \quad d, L \in \mathbb{N}$$

as vector

$$\boldsymbol{p}_{\boldsymbol{x}} = p(\boldsymbol{x}), \qquad \boldsymbol{p} \in \mathbb{F}^{d^L}$$

that is indexed and parametrized by $\boldsymbol{x} \in \{0, 1, ..., d\}^L$.

If $p_x = v(x)$ does *not* couple *all* index components x_n among each other, there is a low rank MPS/TT representation.

This reduces computational cost in summations over the p(x) from exponential to linear in system size.

Write probability mass function

$$p: \{0, 1, ..., d\}^L \to \mathbb{F}, \quad d, L \in \mathbb{N}$$

as vector

$$\boldsymbol{p}_{\boldsymbol{x}} = p(\boldsymbol{x}), \qquad \boldsymbol{p} \in \mathbb{F}^{d^L}$$

that is indexed and parametrized by $\boldsymbol{x} \in \{0, 1, ..., d\}^L$.

If $p_x = v(x)$ does *not* couple *all* index components x_n among each other, there is a low rank MPS/TT representation.

This reduces computational cost in summations over the p(x) from exponential to linear in system size.

How to use this in quantum mechanics?

Outline

▷ MPS / Tensor Trains in statistical physics

 \triangleright MPS in quantum mechanics

Statistical Mechanics - Quantum Mechanics

Instead of considering sums over classical weights, as in the partition sum,

$$1 = \sum_{\boldsymbol{x}} \boldsymbol{p}_{\boldsymbol{x}} = \sum_{\boldsymbol{x}} \langle \boldsymbol{x} | \hat{\boldsymbol{p}}_{\boldsymbol{x}} | \boldsymbol{x} \rangle,$$

where we used a somewhat exaggerated notation.

Statistical Mechanics – Quantum Mechanics

Instead of considering sums over classical weights, as in the partition sum,

$$1 = \sum_{\boldsymbol{x}} \boldsymbol{p}_{\boldsymbol{x}} = \sum_{\boldsymbol{x}} \langle \boldsymbol{x} | \hat{\boldsymbol{p}}_{\boldsymbol{x}} | \boldsymbol{x} \rangle,$$

where we used a somewhat exaggerated notation. We now consider quantum many-body states

$$|\psi
angle = \sum_{m{x}} m{c}_{m{x}} |m{x}
angle,$$

where $|\mathbf{x}\rangle = |x_1\rangle \otimes |x_2\rangle \otimes \cdots \otimes |x_L\rangle = |x_1x_2 \dots x_L\rangle$ is a tensor product of single-particle basis states $|x_i\rangle$. For example

$$|x_i\rangle \in \{|\uparrow_i\rangle, |\downarrow_i\rangle\}$$

Statistical Mechanics – Quantum Mechanics

Instead of considering sums over classical weights, as in the partition sum,

$$1 = \sum_{\boldsymbol{x}} \boldsymbol{p}_{\boldsymbol{x}} = \sum_{\boldsymbol{x}} \langle \boldsymbol{x} | \hat{\boldsymbol{p}}_{\boldsymbol{x}} | \boldsymbol{x} \rangle,$$

where we used a somewhat exaggerated notation. We now consider quantum many-body states

$$|\psi
angle = \sum_{m{x}} m{c}_{m{x}} |m{x}
angle,$$

where $|\mathbf{x}\rangle = |x_1\rangle \otimes |x_2\rangle \otimes \cdots \otimes |x_L\rangle = |x_1x_2 \dots x_L\rangle$ is a tensor product of single-particle basis states $|x_i\rangle$. For example

$$|x_i\rangle \in \{|\uparrow_i\rangle, |\downarrow_i\rangle\}$$

▷ But, do we know anything about how the vector of coefficients c_x couples its components, so that the matrix product format is applicable?

For now we don't have to! Simply try the ansatz!

For now we don't have to! Simply try the ansatz!

▷ We can e.g. simply do a mean-field theory! Let us assume

$$oldsymbol{c_x} \stackrel{!}{=} a^{x_1} a^{x_2} \dots a^{x_L} = \prod_i a^{x_i}$$

then state can be manipulated doing $\sim L$ operations

$$|\psi
angle = \sum_{oldsymbol{x}} c_{oldsymbol{x}} |oldsymbol{x}
angle \stackrel{!}{=} |\psi_{\mathsf{MF}}
angle = \sum_{oldsymbol{x}} \prod_{i} a^{x_{i}} |oldsymbol{x}
angle = \prod_{i}^{\otimes} \Big(\sum_{x_{i}} a^{x_{i}} |x_{i}
angle \Big)$$

For now we don't have to! Simply try the ansatz!

▷ We can e.g. simply do a mean-field theory! Let us assume

$$oldsymbol{c_x} \stackrel{!}{=} a^{x_1} a^{x_2} \dots a^{x_L} = \prod_i a^{x_i}$$

then state can be manipulated doing $\sim L$ operations

$$|\psi
angle = \sum_{\boldsymbol{x}} \boldsymbol{c}_{\boldsymbol{x}} |\boldsymbol{x}
angle \stackrel{!}{=} |\psi_{\mathsf{MF}}
angle = \sum_{\boldsymbol{x}} \prod_{i} a^{x_{i}} |\boldsymbol{x}
angle = \prod_{i}^{\otimes} \left(\sum_{x_{i}} a^{x_{i}} |x_{i}
angle
ight)$$

 \triangleright How to determine the coefficients A^{x_i} ? Variationally solve

$$\partial_{a^{x_i}} \frac{\langle \psi | H | \psi \rangle}{\langle \psi | \psi \rangle} = 0.$$

▷ Approximation to ground state. Approximation is *good* if ground state is in the same *class* of states as the ansatz $|\psi_{MF}\rangle$.

What is a matrix product state? Schollwöck, arXiv:1008.3477 (2011)

Relax mean-field assumption for coefficients of many body states

$$\boldsymbol{c_x} \stackrel{!}{=} a^{x_1} a^{x_2} a^{x_3} \dots a^{x_L} = \prod_i a^{x_i}$$

to one that factorizes in matrices

$$\boldsymbol{c_x} \stackrel{!}{=} \sum_{\{\nu_i\}} A_{\nu_1}^{x_1} A_{\nu_1\nu_2}^{x_2} A_{\nu_2\nu_3}^{x_3} \dots A_{\nu_L}^{x_L} = \prod_i A^{x_i}$$

What is a matrix product state? Schollwöck, arXiv:1008.3477 (2011)

Relax mean-field assumption for coefficients of many body states

$$\boldsymbol{c_x} \stackrel{!}{=} a^{x_1} a^{x_2} a^{x_3} \dots a^{x_L} = \prod_i a^{x_i}$$

to one that factorizes in matrices

$$\boldsymbol{c_x} \stackrel{!}{=} \sum_{\{\nu_i\}} A_{\nu_1}^{x_1} A_{\nu_1 \nu_2}^{x_2} A_{\nu_2 \nu_3}^{x_3} \dots A_{\nu_L}^{x_L} = \prod_i A^{x_i}$$

 $\triangleright\,$ An MPS can be manipulated with costs of $LD^3,$ where D is the dimension of the matrices A^{x_i}

$$|\psi
angle = \sum_{m{x}} c_{m{x}} |m{x}
angle \stackrel{!}{=} |\psi_{\mathsf{MPS}}
angle = \sum_{m{x}} \prod_i A^{x_i} |m{x}
angle$$

What is a matrix product state? Schollwöck, arXiv:1008.3477 (2011)

Relax mean-field assumption for coefficients of many body states

$$\boldsymbol{c_x} \stackrel{!}{=} a^{x_1} a^{x_2} a^{x_3} \dots a^{x_L} = \prod_i a^{x_i}$$

to one that factorizes in matrices

$$\boldsymbol{c_x} \stackrel{!}{=} \sum_{\{\nu_i\}} A_{\nu_1}^{x_1} A_{\nu_1 \nu_2}^{x_2} A_{\nu_2 \nu_3}^{x_3} \dots A_{\nu_L}^{x_L} = \prod_i A^{x_i}$$

▷ An MPS can be manipulated with costs of LD^3 , where D is the dimension of the matrices A^{x_i}

$$|\psi
angle = \sum_{m{x}} m{c}_{m{x}} |m{x}
angle \stackrel{!}{=} |\psi_{\mathsf{MPS}}
angle = \sum_{m{x}} \prod_i A^{x_i} |m{x}
angle$$

 \triangleright Are ground states in the same *class* as MPS? Which is this class? Are the coefficients c_x in ground states *weakly* coupled?

Class of lowly entangled states $_{\mbox{\tiny Eisert, arXiv:1308:3318 (2013)}}$

Many natural quantum lattice models have ground states that are little, in fact very little, entangled in a precise sense. This shows that "nature is lurking in some small corner of Hilbert space", one that can be essentially efficiently parametrized.

Gapped Hamiltonians with short range interactions.

- ▷ Physical correlations have a finite range.
- ▷ Entanglement fulfills **area law**: entanglement of a region A is proportional to surface $|\partial A|$, not volume |A|, of this region.

For a one-dimensional system? Schollwöck, arXiv:1008.3477 (2011)

$$|\psi
angle = \sum_{\boldsymbol{x}_A} \sum_{\boldsymbol{x}_B} M_{\boldsymbol{x}_A \boldsymbol{x}_B} |\boldsymbol{x}_A
angle |\boldsymbol{x}_B
angle$$

Perform SVD (singular value decomposition) $M = USV^{\dagger}$

- $\triangleright \ U^{\dagger}U = I \ \mbox{ and } \ VV^{\dagger} = I,$ i.e. U and V have columns of orthonormal vectors
- \triangleright S is diagonal matrix

wh

$$|\psi
angle = \sum_{
u} s_{
u} |
u
angle_A |
u
angle_B$$
ere $|
u
angle_A = \sum_{m{x}_A} U_{m{x}_A
u} |m{x}_A
angle$ and $|
u
angle_B = \sum_{m{x}_B} V^*_{m{x}_B
u} |m{x}_B
angle$

Reduced density operators are readily obtained from

$$|\psi\rangle = \sum_{\nu} s_{\nu} |\nu\rangle_A |\nu\rangle_B$$

as trace over subsystem \boldsymbol{B} can be performed easily

$$\rho_A = \mathrm{tr}_B |\psi\rangle \langle \psi| = \sum_{\nu} s_{\nu}^2 |\nu\rangle \langle \nu|$$

Entanglement between A and B

$$S_{A|B} = -\mathrm{tr}\rho_A \mathrm{ln}\rho_A = \sum_{\nu} s_{\nu}^2 \, \mathrm{ln} s_{\nu}^2$$

$$\begin{split} \boxed{1} & \ell \ \ell + 1 & L \\ |\psi\rangle &= \sum_{\nu} s_{\nu} |\nu\rangle_{A} |\nu\rangle_{B} \\ \text{where } |\nu\rangle_{A} &= \sum_{\boldsymbol{x}_{A}} U_{\boldsymbol{x}_{A}\nu} |\boldsymbol{x}_{A}\rangle \text{ and } |\nu\rangle_{B} &= \sum_{\boldsymbol{x}_{B}} V_{\boldsymbol{x}_{B}\nu}^{*} |\boldsymbol{x}_{B}\rangle \\ |\psi_{\text{MPS}}\rangle &= \sum_{\boldsymbol{x}_{A}} \sum_{\boldsymbol{x}_{B}} \prod_{i=1}^{l} A^{x_{i}} \prod_{j=l+1}^{L} A^{x_{j}} |\boldsymbol{x}_{A}\rangle |\boldsymbol{x}_{B}\rangle \\ &= \sum_{\nu} \sum_{\substack{\boldsymbol{x}_{A}}} \left(\prod_{i=1}^{l} A^{x_{i}}\right)_{\nu} |\boldsymbol{x}_{A}\rangle \sum_{\boldsymbol{x}_{B}} \left(\prod_{j=l+1}^{L} A^{x_{j}}\right)_{\nu} |\boldsymbol{x}_{B}\rangle \\ &= \sum_{\nu \neq \lambda} \sum_{\boldsymbol{x}_{A}} \left(\prod_{i=1}^{l} A^{x_{i}}\right)_{\nu} |\boldsymbol{x}_{A}\rangle \sum_{\boldsymbol{x}_{B}} \left(\prod_{j=l+1}^{L} A^{x_{j}}\right)_{\nu} |\boldsymbol{x}_{B}\rangle \end{split}$$

▷ As $\nu \in \{1, ..., D\}$, the matrix dimension D directly translates into number of allowed singular values, and by that the number of summands in the entanglement entropy!

$$S_{A|B} = -\mathrm{tr}\rho_A \mathrm{ln}\rho_A = \sum_{\nu} s_{\nu}^2 \, \mathrm{ln} s_{\nu}^2$$

- ▷ Mean-field states with matrix dimension 1 are not entangled!
- \triangleright Everything up to D=1000 is easily treatable on a computer.

Summary

Sufficiently lowly entangled states can be efficiently represented by matrix product states. Fortunately, most physically relevant states are very lowly entangled.

DMRG: Variational ground state search

$$\partial_{A^{\boldsymbol{x}_i}_{\mu\nu}}\frac{\langle\psi|H|\psi\rangle}{\langle\psi|\psi\rangle}=0$$

solved efficiently as ansatz is linear in $A_{\mu\nu}^{\boldsymbol{x}_i}$.

- ▷ Invention of DMRG: White, Phys. Rev. Lett. 69 2863 (1992)
- Reviews: Schollwöck, Rev. Mod. Phys. 77, 259 (2005) / Schollwöck, Annals of Physics 326, 96 (2011)

Summary

Sufficiently lowly entangled states can be efficiently represented by matrix product states. Fortunately, most physically relevant states are very lowly entangled.

DMRG: Variational ground state search

$$\partial_{A^{\boldsymbol{x}_i}_{\mu\nu}}\frac{\langle\psi|H|\psi\rangle}{\langle\psi|\psi\rangle}=0$$

solved efficiently as ansatz is linear in $A_{\mu\nu}^{\boldsymbol{x}_i}$.

- ▷ Invention of DMRG: White, Phys. Rev. Lett. 69 2863 (1992)
- Reviews: Schollwöck, Rev. Mod. Phys. 77, 259 (2005) / Schollwöck, Annals of Physics 326, 96 (2011)

Thank you for your attention!

Schollwöck, U., 2005, Rev. Mod. Phys. **77**, 259. Schollwöck, U., 2011, Annals of Physics **326**, 96. White, S. R., 1992, Phys. Rev. Lett. **69**, 2863.