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Motivation

Kazeev, Khammash, Nip & Schwab, PLoS Comput. Biol. 10 €1003359 (2014)
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simulation package. This allows us. on the one hand, to validate
the accuracy of the O'T'T-based solutions obtained here and, on
the other hand, to provide evidence of the dramatic increase in
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efficiency_afforded by_the new_deterministic_approach: Monte
Carlo_simulations_on_ 1500 cores of a_high-performance_cluster
were matched in accuracy and outperformed in the wall-clock
time by a MATLAB implementation running on a notebook.
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Outline

> Tensor Trains in statistical physics

> Solving the Chemical Master Equation using Tensor Trains
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Statistics

data
> properties of the probability distribution

> underlying laws / mechanisms / causes

Statistical physics

natural laws / microscopic interactions
> beast of a probability distribution

> emergent macroscopic behavior / emergent correlations



Generic example (i): noninteracting 1d Ising model

X1 X2 XN

System described by vector of random variables X € {0,1}" with joint
probability mass function

N
p@) =4 @M Hz) =Y ",
n=1

normalized to Z =% _ e~ H(z)/T
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Generic example (i): noninteracting 1d Ising model

X1 X2 XN

System described by vector of random variables X € {0,1}" with joint
probability mass function

normalized to Z =% _ e~ H(z)/T
> p has 2% components x € {(0,0, ...,0), (0,0, ...,1),... }.

> Remark 2100 ~ 1030 ~ 10!® TB.




Generic example (i): noninteracting 1d Ising model

X1 X2 XN

Compute correlations via cov(X,,, X;,) = (X5 Xm) — (Xn)(Xn).

<XnXm> = Z TnImPex
ac
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Generic example (i): noninteracting 1d Ising model

X1 X2 XN

Compute correlations via cov(X,,, X;,) = (X5 Xm) — (Xn)(Xn).

T

> Naive brute force: 2V operations necessary.

> Monte Carlo: sampling in space of 2% states.
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Generic example (i): noninteracting 1d Ising model

X1 X2 XN

But: non-interacting degrees of freedom X,, imply full separability
N
pCC — p.l‘l,.l’Q,...,l’N — %e Zn:l xn/T

= LA Apy . Apy, Ay, =e™/T

n
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Generic example (i): noninteracting 1d Ising model

X1 X2 XN

But: non-interacting degrees of freedom X,, imply full separability
N
_ n/T
Px = Pzxi,23,....axy — %e 2in=12n/
—zn /T
=LA Apy . Ay, Ag, =e "
Compute correlations in 2N operations . ..
N

o) = g (Snde,) (Lrmaen) 11 (L)

k#nm Tk

= (Xn)(X;m) ... there are none.
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Generic example (ii): interacting 1d Ising model

X] X2 vos Y

«C——C—C—+<—

N

T

N—-1
eiH(m)/T, H(x)=— Z TnTnt1
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Generic example (ii): interacting 1d Ising model

X: X2 ..

o e XN
€—€—6—€€E—¢

Dz =

N

N—-1
eiH(m)/T, H(x)=— Z TnTnt1
n=1

> Is just a “discrete Gaussian” (continuous if X,, € R) with

0
0

OHN O

cov(z,y) ! = 2
T

o O O
TN o

> Correlations by inverting or diagonalizing the covariance matrix.
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Generic example (ii): interacting 1d Ising model

X; X

—e—i—i—i—i—¢

But: two-body interactions imply “almost — separability”

2 By = Y e/ T T
€T €T
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Generic example (ii): interacting 1d Ising model

X: X2 ..

e e XN
€—€—€—€—€—€—€

But: two-body interactions imply “almost — separability”

Z> Pr=Y_ AuiasArss -
x x

=tradA..., Ay g, = T/T A e R

> Compare to non-interacting case

ZY pa= ApAay..., Ay, =e /T
T T

6
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Generic example (ii): interacting 1d Ising model

X] X2 vos Y

C—€—€C—€—<—

Compute correlations in 23N operations (N matrix products)

m—1 N-1

(X Xom —tra” H (A[k])M I1 (A[k]>M I1 (AW)

k=n k=m

1
where M = < 0
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Generic example (ii): interacting 1d Ising model

X] X2 vos cee

C—€—€C—€—<—

Compute correlations in 23N operations (N matrix products)

m—1 N—-1
L [k [k [k
(X Xom) t “H<A )MIEL(A )ng(A )

1 0
where M—<O _1>

> Compare to non-interacting case (2N operations)

Xl = 7 (e, ) (S mn.) T1 (L)

k#nm T



Generic example (iii): three-body interacting Ising model

X1 X2 ...
Dz %eiH(m)/T’ H(CB) Z LInLn4+1Ln+2
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Generic example (iii): three-body interacting Ising model

X1 X2 XN
N-2
Pz = %efH(m)/T, H(x)=— Z TnTn+1Tn+2
n=1

N-2 = g

A Amn,xn+17wn+2 - e:cnxn+1l‘n+2/

7 E Pz = E H Axn,xn+1,xn+2 A R2><2><2
x x =1 <

n
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Generic example (iii): three-body interacting Ising model

X X2 .. .. . XN
N-2
~ 1 _—H T
Dz = 7€ @)/ 5 H(CL’) = - § TnIn+1Tn+2
n=1
N-2 _ T
Z 15 . A A$n7$n+17$n+2 - e$n$n+1$n+2/
Z r Z Tn,Tnt1:0nt2 2X2x2
x x n=1 AeR
N—-2 _
N B Bﬁﬁl,2$n+1+$n+2 - Aﬂcn,ﬂcn+1,l’n+2

’
n*n+1

m/n+1’a’;1+2 Be R2X4
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Generic example (iii): three-body interacting Ising model

X X2 .. .. . XN
N-2
~ 1 _—H(x)/T
Dz = 7€ @)/ 5 H(CB) = - § TnIn+1Tn+2
n=1
N-2 _ T
Z N A A$n7$n+17$n+2 - e$n$n+1$n+2/
E DPx = E T, Tn+1,Tn+2
’ ’ 2X2X2
x x n=1 A SPIN
N—-2 _
t Bx;u2$n+1+-73n+2 - Aﬂcn,ﬂcn+1,l’n+2
= x! 2 Bz/ !
nn41 ntl¥nt+2 B c R2X4
xz’ n=1

Tensor Train format > (23 + 4%) N operations
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> Write function v : {0,1,....,d} — F, d, N € N as vector v, = v(x),
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White, Phys. Rev. Lett. 69 2863 (1992)



Summary Part |

> Write function v : {0,1,....,d} — F, d, N € N as vector v, = v(x),
v e IFdAf that is indexed and parametrized by x € {0,1, ..., d}N.
If v, = v(x) does not couple all index components z;,, among each
other, there is a low rank TT representation.

This reduces computational cost in manipulations of such a function
(vector) from exponential to linear in system size.

> Approach stems from quantum many-body physics.

White, Phys. Rev. Lett. 69 2863 (1992)
In the quantum TT community, the most used algorithm is an
optimization that operates on an arbitrarly parameterized TT:

Solve linear system Hwv = Av for the lowest eigenvalue

(v, Hv)
(v,v)

. N N N
Mming, veCl, Hecd xd
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> Tensor Trains in statistical physics

> Solving the Chemical Master Equation using Tensor Trains



Solving the chemical master equation using Tensor Trains

Kazeev, Khammash, Nip & Schwab, PLoS Comput. Biol. 10 €1003359 (2014) Dolgov & Khoromskij, arXiv:1311.3143 (2013)

N reacting molecules in thermal equilibrium are described by a jump
Markov process: the number of molecules of one species corresponds to
one component of a random vector X (t) € {0,1,...,nmax}".
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Solving the chemical master equation using Tensor Trains

Kazeev, Khammash, Nip & Schwab, PLoS Comput. Biol. 10 €1003359 (2014) Dolgov & Khoromskij, arXiv:1311.3143 (2013)

N reacting molecules in thermal equilibrium are described by a jump
Markov process: the number of molecules of one species corresponds to
one component of a random vector X (t) € {0,1,...,nmax}".

The corresponding probability density function p(t), where pg(t) is the
probability for that a certain population number configuration
x = (n1,na,...,nyN) occurs at time ¢, evolves according to a linear ODE

() = Hp()

H describes chemical reactions parametrized by propensities w(x) and
coupling terms.
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Example: enzymatic futile cycle

Kazeev, Khammash, Nip & Schwab, PLoS Comput. Biol. 10 €1003359 (2014)

(c)
102
i /W/»M—l\
k k -4
+1 —1 10
X+E —FE,, X' +E' —E°,
ko k_a o

(A)
+— (A), truncated
=— (B), truncated
+— (C), truncated

.
—v— (D), truncated

p K43 f « p K3 f -
B2 —— SE +X, EY — > E 4X, v

e N N )
10 10 10 10 10 10 10 10
> State space truncated to 222 ~ 4. 105.

> “...10'% Monte Carlo simulations (every 10000 draws taking at least
110 seconds, amounting to the overall CPU time over 10® seconds) .. ."
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Tensor Trains in the literature

> Physics: schollwick, Rev. Mod. Phys. 77, 259 (2005) | Schollwéck, Annals of Physics 326, 96 (2011)
> Applied mathematics: no review yet, but vivid research activities.
> “Data science”: few very recent treatments.

> Biology: One journal article.
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> Physics: schollwick, Rev. Mod. Phys. 77, 259 (2005) | Schollwéck, Annals of Physics 326, 96 (2011)

> Applied mathematics: no review yet, but vivid research activities.

> “Data science”: few very recent treatments.

> Biology: One journal article.

Thanks for your attention!
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