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Motivation
Kazeev, Khammash, Nip & Schwab, PLoS Comput. Biol. 10 e1003359 (2014)
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Outline

. Tensor Trains in statistical physics

. Solving the Chemical Master Equation using Tensor Trains
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Generic example (i): noninteracting 1d Ising model

System described by vector of random variables X ∈ {0, 1}N with joint
probability mass function

p(x) = 1
Z e
−H(x)/T , H(x) =

N∑
n=1

xn

normalized to Z =
∑

x e
−H(x)/T .
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. p has 2N components x ∈ {(0, 0, ..., 0), (0, 0, ..., 1), . . . }.

. Remark 2100 ' 1030 ' 1015 TB.
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Generic example (i): noninteracting 1d Ising model

Compute correlations via cov(Xn, Xm) = 〈XnXm〉 − 〈Xn〉〈Xn〉.

〈XnXm〉 =
∑
x

xnxmpx
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〈XnXm〉 =
∑
x

xnxmpx

. Naive brute force: 2N operations necessary.

. Monte Carlo: sampling in space of 2N states.
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Generic example (i): noninteracting 1d Ising model

But: non-interacting degrees of freedom Xn imply full separability

px = px1,x2,...,xN = 1
Z e
−

∑N
n=1 xn/T

= 1
ZAx1Ax2 . . . AxN , Axn = e−xn/T
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1

Z

(∑
xn

xnAxn

)(∑
xm

xmAxm

) N∏
k 6=n,m

(∑
xk

Axk

)
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Generic example (ii): interacting 1d Ising model

p̃x = 1
Z e
−H(x)/T , H(x) = −

N−1∑
n=1

xnxn+1
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Generic example (ii): interacting 1d Ising model

p̃x = 1
Z e
−H(x)/T , H(x) = −

N−1∑
n=1

xnxn+1

. Is just a “discrete Gaussian” (continuous if Xn ∈ R) with

cov(x,y)−1 =


0 2

T 0 . . . 0
2
T 0 2

T . . . 0
0 2

T 0 2
T . . .

0
. . .

. . .
. . .

. . .


. Correlations by inverting or diagonalizing the covariance matrix.
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Generic example (ii): interacting 1d Ising model

But: two-body interactions imply “almost – separability”

Z
∑
x

p̃x =
∑
x

ex1x2/T ex2x3/T . . .
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Generic example (ii): interacting 1d Ising model

Compute correlations in 23N operations (N matrix products)

〈XnXm〉p̃ =
1

Z
trall

n−1∏
k=1

(
A[k]

)
M

m−1∏
k=n

(
A[k]

)
M

N−1∏
k=m

(
A[k]

)
where M =

(
1 0
0 −1

)
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Generic example (iii): three-body interacting Ising model

p̂x = 1
Z e
−H(x)/T , H(x) = −

N−2∑
n=1

xnxn+1xn+2

Z
∑
x

p̂x =
∑
x

N−2∏
n=1

Axn,xn+1,xn+2

Axn,xn+1,xn+2 = exnxn+1xn+2/T

A ∈ R2×2×2

=
∑
x′

N−2∏
n=1

Bx′
n,x

′
n+1

Bt
x′
n+1,x

′
n+2

Bx′
n,2xn+1+xn+2 = Axn,xn+1,xn+2

B ∈ R2×4

Tensor Train format . 1
2(2

3 + 43)N operations
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Summary Part I

. Write function v : {0, 1, ..., d}N → F, d,N ∈ N as vector vx = v(x),

v ∈ FdN, that is indexed and parametrized by x ∈ {0, 1, ..., d}N .

If vx = v(x) does not couple all index components xn among each
other, there is a low rank TT representation.

This reduces computational cost in manipulations of such a function
(vector) from exponential to linear in system size.

. Approach stems from quantum many-body physics.
White, Phys. Rev. Lett. 69 2863 (1992)

In the quantum TT community, the most used algorithm is an
optimization that operates on an arbitrarly parameterized TT:

Solve linear system Hv = λv for the lowest eigenvalue

minv
(v, Hv)

(v,v)
, v ∈ CdN , H ∈ CdN×dN
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. Solving the Chemical Master Equation using Tensor Trains
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Solving the chemical master equation using Tensor Trains
Kazeev, Khammash, Nip & Schwab, PLoS Comput. Biol. 10 e1003359 (2014) Dolgov & Khoromskij, arXiv:1311.3143 (2013)

N reacting molecules in thermal equilibrium are described by a jump
Markov process: the number of molecules of one species corresponds to
one component of a random vector X(t) ∈ {0, 1, . . . , nmax}N .

The corresponding probability density function p(t), where px(t) is the
probability for that a certain population number configuration
x = (n1, n2, ..., nN ) occurs at time t, evolves according to a linear ODE:

d

dt
p(t) = Hp(t)

H describes chemical reactions parametrized by propensities ω(x) and
coupling terms.
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Example: enzymatic futile cycle
Kazeev, Khammash, Nip & Schwab, PLoS Comput. Biol. 10 e1003359 (2014)

. State space truncated to 222 ' 4 · 106.

. “. . . 1010 Monte Carlo simulations (every 10000 draws taking at least
110 seconds, amounting to the overall CPU time over 108 seconds) . . . ”
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Tensor Trains in the literature

. Physics: Schollwöck, Rev. Mod. Phys. 77, 259 (2005) / Schollwöck, Annals of Physics 326, 96 (2011)

. Applied mathematics: no review yet, but vivid research activities.

. “Data science”: few very recent treatments.

. Biology: One journal article.

Thanks for your attention!
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. Applied mathematics: no review yet, but vivid research activities.

. “Data science”: few very recent treatments.

. Biology: One journal article.

Thanks for your attention!

12 / 12



Dolgov, S. & B. Khoromskij, 2013, 1311.3143.

Kazeev, V., M. Khammash, M. Nip & C. Schwab, 2014, PLoS Comput.
Biol. 10, e1003359.
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