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Motivation: two-site cluster DCA

Wolf, McCulloch, Parcollet & Schollwéck, PRB 90 115124 (2014a)

Model: Hole-doped Hubbard model on 2 dim square lattice, CTQMC by Ferrero, Cornaglia,

De Leo, Parcollet, Kotliar & Georges, PRB 80 064501 (2009)
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Fundamental problem of method: during Chebyshev recursion entanglement is
generated > accessible order or recursion limited (analogous to time evolution)



Chebyshev expansion of spectral function

WeiBe, Wellein, Alvermann & Fehske, RMP 78 275 (2006)

Chebyshev Polynomials T, (x) = cos (narccos(z))
Recursive Tpi1(z) = 22T (z) — T ()
Ti(z)=x To(z) =1
Orthogonal /1 dx
T (2)Th () X Omn
VI @@



Chebyshev expansion of spectral function

WeiBe, Wellein, Alvermann & Fehske, RMP 78 275 (2006)

Chebyshev Polynomials T, (x) = cos (narccos(z))
Recursive Tpi1(z) = 22T (z) — T ()
Ti(z)=x To(z) =1
Orthogonal /1 dx
T (2)Th () X Omn
VI @@

Global spectral function of H gives probability to find an eigenvalue at z
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Chebyshev expansion of spectral function

WeiBe, Wellein, Alvermann & Fehske, RMP 78 275 (2006)

Chebyshev Polynomials T, (x) = cos (narccos(z))

Recursive Tpi1(z) = 22T (z) — T ()
Ti(z)=x To(z) =1

Orthogonal o

Global spectral function of H gives probability to find an eigenvalue at z

1
= G 25

Local spectral function gives probability to find eigenvalues at x under the strong
constraint that eigenstates at x are close to a state |to) (non-zero overlap (to|Er))

A(z) = (told(z — H)lto) = tholE oz~ &)

Aglob ( ) —Tr (5(

dim ’H



Expand §(z — H) in Chebyshev polynomials
WeiBe, Wellein, Alvermann & Fehske, RMP 78 275 (2006)
Expansion coefficient

/ da To(2)8(z — H) = Tu(H)

Sum to infinity

o(x—H

Insert this in spectral function

8

A(z) = (told(z = H)lto) ~

@) (to| T (

Use recursive definition to compute |t,) = T5, (H) \to)

[tn) = 2H[tn—1) — [tn—2)
[t1) = H|to)

H)lto)
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Comments on Chebyshev recursion with MPS

WeiBe, Wellein, Alvermann & Fehske, RMP 78 275 (2006)

[tn) = 2H[tn-1) — [tn—2)
[t1) = H]to)

> starting from a weakly entangled state |to), one evolves farer and farer away into a
highly-entangled sector wolf, McCulloch, Parcollet & Schollwsck, PRB 90 115124 (2014a)

> need to adjust matrix dimensions > only finite expansion order n can be reached
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WeiBe, Wellein, Alvermann & Fehske, RMP 78 275 (2006)

[tn) = 2H[tn-1) — [tn—2)
[t1) = H]to)

> starting from a weakly entangled state |to), one evolves farer and farer away into a
highly-entangled sector wolf, McCulloch, Parcollet & Schollwsck, PRB 90 115124 (2014a)

> need to adjust matrix dimensions > only finite expansion order n can be reached

Fundamental problem: All MPS methods suffer from entanglement growth!
> Time evolution e*#*|to): only short times
> Dynamic DMRG: only high values of broadening parameter (regulizer) n

> Lanczos recursion and Chebyshev recursion: only low expansion orders

Is there are a way to escape this?



Analyticity of Green functions
Spectral function is
.1 ;
A(z) = — %13}) ;Im G(x +1in)

where G(z + in) is analytic in upper half plane.
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Analyticity of Green functions
Spectral function is

1 ‘
A(z) = _ili% ;lm G(z +1in)

where G(z + in) is analytic in upper half plane.

Green function also analytic in time domain
G(t) = lim [ dz G(x + in)e” ™",
n—0
Complex analysis: If we know G(.) locally exactly, we can reconstruct it globally.

Recipe: Find function f(.) that locally agrees with G(.). Use this function to
reconstruct G(.) in the whole upper half plane.

Example: Knowledge of G(z) on the imaginary-frequency axis: fit Padé approximation
(continued fraction) to it and reconstruct lim,—.0 G(z + in) on the real axis.

6
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Analytical continuation on the real-time axis

Laplace series is a suitable set of functions to fit G(t) on real axis.

> Allow j to run over all eigen states > Fourier series: w; ~ E; and n; =0
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Analytical continuation on the real-time axis

Laplace series is a suitable set of functions to fit G(t) on real axis.

J(t) = 3 Jagetermt

J
> Allow j to run over all eigen states > Fourier series: w; ~ E; and n; =0

> Instead: target effective peak structure corresponding to excitations (aggolmeration
of poles / eigenvalues) > much less terms in 3. ... which are now damped > Laplace
series

> Analytical continuation: If there is a method to determine the parameters in f(t)
that make it equal to some local exact data of G(t), then we can use f(¢) to
reconstruct G(t) for all times.
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Linear prediction

Non-linear fitting problem is hard to solve!
P .
Ft) = agelimmtp>0.
j=1

Note the following property of f(t), which emerges if we discretize time linearly

f(tn) = Zajf(tnfj)v |a’j| <1l
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Linear prediction

Non-linear fitting problem is hard to solve!
P .
Ft) = agelimmtp>0.
j=1

Note the following property of f(t), which emerges if we discretize time linearly

f(tn) = Zajf(tnfj)v |a’j| <1l

Demand that numerical data G(t,) and f(t,) agree on domain [to, t1] that is
accessible to the numerical method, i.e. minimize

> |Gt = D asGltns)

tn E€[to,t1]

2

> This linear fitting problem (determine parameters a;) can be easily solved!
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Example: simple low energy excitations

White & Affleck, PRB 77 134437 (2008) Barthel, Schollwéck & White, PRB 79 245101 (2009)

Low energy excitiations
> determine long-time behavior o (™~ where < 1

. . . n 1
> determine sharp features in spectral function oc P eyl

17



Example: simple low energy excitations

White & Affleck, PRB 77 134437 (2008) Barthel, Schollwéck & White, PRB 79 245101 (2009)

Low energy excitiations
> determine long-time behavior o (™~ where < 1

. . . n 1
> determine sharp features in spectral function oc 2 P eyl

For a general single-particle excitation of the ground state
> for short times, eigenstates from the whole single-particle bandwidth contribute!

> at long times, only a superposition of few o e(™“~™¢ survive

Linear prediction obviously applies for magnons in Heisenberg model!

02 10FE T T T T 7]

T [— Extrapolated for t > 10
—— DMRG | | —— 2nd order i
---- 4th order
I -=-=+ cos window T

0.1

S”(x=0,t)




Linear prediction of Chebyshev expansion

Linear prediction in time > extrapolate coefficients G(¢,) of Fourier expansion of A(x)

By analogy? / Ad hoc: Why not try linear predicition for coefficients p,, of Chebyshev
expansion of A(z)? Ganahl, Thunstrém, Verstracte, Held & Evertz, PRB 79 045144 (2014)
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Linear prediction of Chebyshev expansion

Linear prediction in time > extrapolate coefficients G(¢,) of Fourier expansion of A(x)

By analogy? / Ad hoc: Why not try linear predicition for coefficients p,, of Chebyshev
expansion of A(z)? Ganahl, Thunstrém, Verstracte, Held & Evertz, PRB 79 045144 (2014)
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> In the setup they considered, Chebyshev expansion is equivalent to Fourier expansion!

General problem:

> (Complex) analyticity “hard” (impossible) to define for a discrete sequence fi,,

> Seeing linear prediction as analytical continuation not straight-forward to justify!
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Linear prediction of Chebyshev expansion

Another view point: Convergence theory for Chebyshev expansions.

> Roughly: Chebyshev expansion of f(z) convergences exponentially if f(x) smooth
and algebraically if f(.’B) discontinuous. Boyd, Chebyshev and Fourier spectral methods (2001)
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Linear prediction of Chebyshev expansion

Another view point: Convergence theory for Chebyshev expansions.

> Roughly: Chebyshev expansion of f(z) convergences exponentially if f(x) smooth
and algebraically if f(.’B) discontinuous. Boyd, Chebyshev and Fourier spectral methods (2001)

> Exponential convergence is compatible with linear prediciton!

But: spectral function is in general at least discontinuous. Although in the
thermodynamic limit, the delta functions merge to a sectionwise smooth function

A% (2) = S [(t5 1B 6z — Ei)

the weights |<t§\En)}2 can produce discontinuities.

N
< L
0 2 4
/v
0]
full G full
Enﬂln'Emm 0 Ernuax"Emin
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Chebyshev expansion of fermionic Green function

For a fermionic particle-like Green function, defined by choosing |t5) = ¢|Eo), the
discontinuity can be lifted by adding the hole parts |t5) = c|Fo)

Az) = A7 (x) + AS(—2x)

> Chebyshev expansion of A(z) much better controlled than the one of A~ (z) Holzner,
Weichselbaum, McCulloch, Schollwéck & von Delft, PRB 83 195115 (2011)

> accessible to linear predicition Ganahl, Thunstrém, Verstraete, Held & Evertz, PRB 90 045144 (2014)

Observe: Discontinuity produced by weights |<t§\En)]2 if [ty ) involves ground state
at x = 0 can also be lifted by defining

A (z) = A” (z) — A”(0).
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Chebyshev expansion of fermionic Green function

A@)=A”(2)+ A7 (—z) A7 ()= A" (z) — A7(0)

The Chebyshev expansions of both continuous redefinitions converge exponentially!
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Emum'Emin 0 Er::ax'Emin n/a (1/v)

> We can hence apply linear predicition to both of these redefinitions.

> Only problem: prior to linear predicition, the value of A~ (0) is unknown. Luckily,
the corresponding self-consistency equation can be stably solved iteratively.
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Chebyshev expansion of fermionic Green function
What is the advantage of using A(z) over A(x)?

Alw) = A7 (2) + A (-2) A (z) = A”(z) — A7 (0)

> Different view on recursion over H: Probe spectrum of H in vicinity of |to) by
subsequent applications of H

> MPS: each application of H to the test vectors |t,) produces entanglement

> Fundamental question: find the recursion (algorithm) that extracts most
information about spectrum of H per application of H?

> Jorge: Lanczos better than Chebyshev (among other results)
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Chebyshev expansion of fermionic Green function
What is the advantage of using A(z) over A(xz)?
Alz) = A% (z) + A” (—z)  A”(x) =A™ (z) — A~ (0)
> Among all possible setups of Chebyshev recursions, which one is optimal? > wolf,
McCulloch, Parcollet & Schollwdck, PRB 90 115124 (2014a)
Here:

> A(w) is only available in the least-optimal setup of Chebyshev recursions (which we
can now show is the one that is equivalent to time evolution)

> A~ (w) is available in the optimal setup (resolution increased by factor ~ 6)!
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Orders of magnitude speed-up for MPS computations

> To reach the same error level, an expansion order of about ~ % of the original setup

suffices.

> Due to the exponential time scale, this means a huge speedup. In the following

example, a factor 30.
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Outlook

Path 1: Combine several results on the computation of spectral functions to treat
multi-band problems in DMFT applications.

o Correct way of treating recursions with MPS: adaptive bond dimensions
Wolf, McCulloch, Parcollet & Schollwéck, PRB 90 115124 (2014a)

o Optimal Chebyshev recursion w.r.t. entanglement production
Wolf, McCulloch, Parcollet & Schollwéck, PRB 90 115124 (2014a)

o Linear prediction for Chebyshev expansions
Ganahl, Thunstrom, Verstraete, Held & Evertz, PRB 90 045144 (2014)

o Least entangled geometry for representation of impurity problems
Wolf, McCulloch & Schollwdck, arXiv:1410.3342 (2014b)

o Exploit optimal Chebyshev recursion for linear prediction

this work

Path 2: Use equialence of time evolution and Chebyshev expansion to use the
Chebyshev recursion as a new time evolution that only involves action of H (MPO
representation known) and not of e~ “'* (no MPO representation known). this work
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Summary

o Chebyhsev recursion efficient way to compute spectral functions

o from precise knowledge of G(t) on a small domain [to, 1] reconstruct G(t) for all
times

o linear prediction is, due to linearity, a practically feasble algorithm to extract
precise information about G(t) on [to, t1]

o linear prediction can also be applied to Chebyshev expansions
o lift discontinuity of spectral functions to use optimal Chebyshev setup

o orders of magnitude speedup for MPS computations
independent of that

o Chebyshev expansion almost equivalent to Fourier expansion for a certain choice
of Chebyshev parameters
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o Chebyhsev recursion efficient way to compute spectral functions

o from precise knowledge of G(t) on a small domain [to, 1] reconstruct G(t) for all
times

o linear prediction is, due to linearity, a practically feasble algorithm to extract
precise information about G(t) on [to, t1]

o linear prediction can also be applied to Chebyshev expansions
o lift discontinuity of spectral functions to use optimal Chebyshev setup

o orders of magnitude speedup for MPS computations

independent of that

o Chebyshev expansion almost equivalent to Fourier expansion for a certain choice
of Chebyshev parameters

Thanks for your attention!
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