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Collapse and revival of the matter wave field of a Bose-Einstein

condensate . Greiner, 0. Mandel, T. W. Hansch, and 1. Bloch, Nature 419 (2002)

scenario

initital state = BEC, approx. by a single-site coherent state: |ag) = e/ >on %m)

hamiltonian after quench: H(t > 0) = 1Un(7 — 1)
= periodic time evolution with frequency w = U: |a(t)) = €l® 3 e=#3Un(n=Dtal )

<aLak

> : matter wave interference pattern in the k.-ky-plane for different times ¢
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Collapse and revival oscillations as a probe for measuring
multi-body interaction energies

A 40ps 0 2720ps| + » 5120ps [+ = = 7600us [+ » «
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A:isibility” o (af_gak—o )
B: fourier analysis of interference pattern
C: time-scales and lattice depth of experimental realization for quench
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Matter of fact

Former investigations of collapse and revivals only for systems in the atomic limit or
via a solely meanfield approach.

Now: extensive study of the phenomenon to extract the influence of the hopping
amplitude using full many body states by application of

» exact techniques to estimate the predicitve power of
> a Gutzwiller mean-field approach for systems with a large Hilbert space
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Matter of fact

Former investigations of collapse and revivals only for systems in the atomic limit or
via a solely meanfield approach.

Now: extensive study of the phenomenon to extract the influence of the hopping
amplitude using full many body states by application of

» exact techniques to estimate the predicitve power of
> a Gutzwiller mean-field approach for systems with a large Hilbert space

Outline

» Exact approaches to hard-core bosons in non-equilibrium
» Gutzwiller mean-field approach vs. exact results

> Results for experimentally relevant systems
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Exact solution for HCBs

Exact approaches to hard-core bosons in non-equilibrium
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Why study hard-core bosons on a superlattice?

Bosons on an optical lattice are well described by the Bose-Hubbard model

. cin U
_ Tp. el APy — 25
Hgeg = —J E (b]b; + H.c.) + 3 E (i — 1)+ V g i

(i5) i
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Why study hard-core bosons on a superlattice?

Bosons on an optical lattice are well described by the Bose-Hubbard model

Hscg = —J ) (bjbj +H.c) + o an = 1)+ V'Y ri
(i5) i

What are hard-core bosons?

HHCB——JZ c i Cj +Hc +VZ7‘JL1
(i5)

where [¢;,el] =di;, [¢,6]=0 and ¢élef =0
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Why study hard-core bosons on a superlattice?

Bosons on an optical lattice are well described by the Bose-Hubbard model

HSCB__JZ bTb +H.e + an(nz_l +VZT1TLz
(i5)

What are hard-core bosons?

Hucs = —J > _ (éle; + He) +VZrlm
(i)

where [¢;,el] =di;, [¢,6]=0 and ¢élef =0

So, why study hard-core bosons on a superlattice?

HHCB——JZ ccj—i—Hc +AZ i+VZ7”i2fli

(i5)
Because HCBs on a super-lattice show similar physical phenomena as
compared to SCBs but numerically exact solutions are available.
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Hard-core bosons on a superlattice

Two bands similiar to Hubbard bands
> diagonalization of Hycs by means of a fourier transform yields

ex (k) = £1/4J2 cos? (ka) + A2

> superlattice A opens gap for HCBs as interaction U does for SCBs
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Hard-core bosons on a superlattice

Two bands similiar to Hubbard bands
> diagonalization of Hycs by means of a fourier transform yields

ex (k) = £1/4J2 cos? (ka) + A2

> superlattice A opens gap for HCBs as interaction U does for SCBs

Consequences

» equilibrium: similar phase diagram to that of the Bose Hubbard model
|. Hen and M. Rigol, Phys. Rev. B 80 (2009)
I. Hen, M. Iskin, and M. Rigol, Phys. Rev. B 81 (2010)

> non-equilibrium: collapse and revival oscillations, A plays role of U
M. Rigol, A. Muramatsu, and M. Olshanii, Phys. Rev. A 74 (2006)
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Exact solution for HCBs Solution techniques

Hard-core bosons in one dimension
Map on free fermions by Jordan-Wigner transformation

j—1 i
Tt || —iﬂaﬂaﬁ
Cj = aj e

p=1

> calculation of properities of non-interacting particles through one-particle
representation of hamilton operator: Hilbert space dimension = L

» computational time scaling for one-particle green’s function: L®
> non-equilibrium properties for system sizes with L ~ 500
> investigation of inhomogeneous (trapped) systems possible

F. Alexander Wolf (Augsburg U) Coll. and rev. oscill. as a probe... 27 July 2011 9/21
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Hard-core bosons in one dimension
Map on free fermions by Jordan-Wigner transformation

j—1 i
Tt || —iﬂaﬂaﬁ
Cj = aj e

p=1

> calculation of properities of non-interacting particles through one-particle
representation of hamilton operator: Hilbert space dimension = L

» computational time scaling for one-particle green’s function: L®
> non-equilibrium properties for system sizes with L ~ 500
> investigation of inhomogeneous (trapped) systems possible

Hard-core bosons in two dimensions
Exact Diagonlization
> systemsize L=4x4=16

» small but meaningfull for periodic systems

» not meaningfull for trapped case
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Exact solution for HCBs Results for homogeneous case

Results for hard-core bosons in one and two dimensions

observable

1 t
Nk=0 = Z Zij<bi bj>

revival time
Atrev = t?ésm — trev

flom = /A, A=1

revival amplitude
\(
AnY g = ni20 ey — Nieeg

N30 ey = ne=o(t = 0)
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Results for hard-core bosons in one and two dimensions

10
observable 10° |
1 apa 10" |
Nk=0 = T Zij<b7j bj> 102k
Z§ peys
. . 10-4 F
revival time 105 b
-6 [
Atrev = t?ésm — Trev 10
atom __ — 0 L :N=
tey =m/A, A=1 L e
n=0.
102 2p: noo,
] . 10 | iy
revival amplitude >0
elg6 |
C
rev atom rev
Anplo = Np20rev — Moo < 108
atom
NE20rev = Ne=0(t = 0) 10710 .
0.0001 0.001 0.01 0.1 1

JIA

F. Alexander Wolf (Augsburg U) Coll. and rev. oscill. as a probe... 27 July 2011 11/21



Results for hard-core bosons for a trapped system in 1D
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Results for hard-core bosons for a trapped system in 1D
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Gutzwiller mean-field approach

Gutzwiller mean-field approach vs. exact results
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Gutzwiller mean-field approach

Back to the Bose-Hubbard model

e it U P A V2
Hscp = —J;(bibj +H.c.)+ 5 an(nl 1)+Zn1Vr,
ij i i
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Gutzwiller mean-field approach

Back to the Bose-Hubbard model

e it U P A V2
Hscp = —JZ(bibj +H.c.)+ 5 an(nl 1) —i—ZnZVr,

(5)

Gutzwiller type product state
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Gutzwiller mean-field approach Introduction: equilibrium

Gutzwiller mean-field approach

Back to the Bose-Hubbard model
~ PN U A R
Hsos = —J Y _(blb; + H.c.) + 5 Z (g — 1) + Z nVry

(5)

Gutzwiller type product state

Variational principle

8 (Unr|Hscg — N [Wnir) = 0
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Gutzwiller mean-field approach for non-equilibrium

D. Jaksch, V. Venturi, J. I. Cirac, C. J. Williams, and P. Zoller, Phys. Rev. Lett. 89 (2002)

Time-dependent variational principle
8 (Uneidy — Hscs + pN|[¥ye) = 0

yields set of L x n. differential equations

10in = —JZ n+ lal(n_‘_l)q) + \/ﬁaz(n 1) P; )
(3)i

+ ainn

SIS

(n—1)+Vr; —u

where  ®; = (a;) = Y12 /N, 1)Qn

» numerically solved with forth-order Runge-Kutta method
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Analytical solution for HCBs in the mean-field approach

due to mapping on spin-states

L
|URER) = Heix" (sin% + cos %ew"bf) |0)

i=1
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Gutzwiller mean-field approach Analytic solution for HCBs

Analytical solution for HCBs in the mean-field approach

due to mapping on spin-states

L
|URER) = He”“ (sin% + cos %ew"bf) |0)
i=1

and translational invariance (two-site problem) — massive simplification:

6, = —2d J sin B, sin ¢
0y = 2d Jsin 6y sin ¢

¢ =2A—2d J(sin 0z cot 01 — sin 0, cot O2) cos ¢

where ¢ = ¢1 — ¢»
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Analytical solution for HCBs in the mean-field approach

due to mapping on spin-states
gy 0; 0;
|URER) = il:[le”“ (sm; + cos 22 “ﬁ'bT) |0)

and translational invariance (two-site problem) — massive simplification:

6, = —2d J sin B, sin ¢

0y = 2d Jsin 6y sin ¢

gz5 =2A —2d J(sin 02 cot 1 — sin 01 cot O2) cos ¢
where ¢ = ¢1 — ¢2

Observation of trajectories yields solution for revival time
U 1
by — / duf(u) with f(u) = {d2J2(1 - u?)[1 — (2y — u)?] — (Ho — 24u)?} 2
ul

where v =2n — 1, Ho = —8n(1 —n)dJ — 2yA and u,, solutions of f(u) =0
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What can we learn from this analytical treatment?

for the revival time:
» dimension rescales J: J — dJ
> scaling: trev(J, A) = trev(J/A)/A

> revival time a solely "energetic"
quantity

for the revival amplitude (damping)

> no damping:
nk=o0 = n—gi7 (L—1)(Ho+2A cos 6:)

> scaling: nr—o(J, A) = nr=o(J/A)

F. Alexander Wolf (Augsburg U)
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What can we learn from this analytical treatment?

(@)

for the revival time:
» dimension rescales J: J — dJ
> scaling: trev(J, A) = trev(J/A)/A

> revival time a solely "energetic"
quantity

for the revival amplitude (damping)

> no damping:
nk=o0 = n—gi7 (L—1)(Ho+2A cos 6:)

> scaling: nx=o(J, A) = nr=o(J/A)
deficencies

» meanfield completely fails to describe
revival damping

» artefact for dJ = 1: no oscillations
Sciolla and Biroli, Phys. Rev. Lett. 105 (2010)

need to check validity of the mean-field
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Comparison between exact and mean-field results
Comparison between exact and mean-field results

error

e(J) =

Atia (1) — At (])

At (J)
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Gutzwiller mean-field approach Comparison between exact and mean-field results

Comparison between exact and mean-field results
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Results for SCBs

Results for experimentally relevant systems
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Results for the Bose-Hubbard model - homogeneous potential

10 T T
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Calculations for exemplary system parameters, in particular an interaction quench
of Ui = 6 — Usn = 12 and different densities

System size
> homogeneous case: one-site problem
> trapped case: calculations for a system with L = 30 x 30 x 30 = 27000

cut-off for the max. occupancy of a lattice site: nc =7
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Results for SCBs in a trapping potential

Results for the Bose-Hubbard model in a trap
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in a trapping potential
Conclusion

by usage of the analogy: HCBs with super-lattice <+ SCBs with interaction
we could extract several reliable results via the application of exact and mean-field
approaches:

» very small error of the mean-field for the “right observable”, i.e. the revival time
» simple functional form of the relation: J/U < trey

» furthermore: definite statements about features such as scaling w.r.t. to system
parameters, experimentally meaningful quench scenarios, artefacts of the
mean-field

proposed experiment:

for a given value of the interaction constant U, the determination of the hopping
constant via a measurement of the revival time is possible by comparison with
mean-field calculations

reference: Wolf, Hen, and Rigol, Phys. Rev. A 82, 043601 (2010)
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in a trapping potential
Conclusion

by usage of the analogy: HCBs with super-lattice <+ SCBs with interaction
we could extract several reliable results via the application of exact and mean-field
approaches:

» very small error of the mean-field for the “right observable”, i.e. the revival time
» simple functional form of the relation: J/U < trey

» furthermore: definite statements about features such as scaling w.r.t. to system
parameters, experimentally meaningful quench scenarios, artefacts of the
mean-field

proposed experiment:

for a given value of the interaction constant U, the determination of the hopping
constant via a measurement of the revival time is possible by comparison with
mean-field calculations

reference: Wolf, Hen, and Rigol, Phys. Rev. A 82, 043601 (2010)

Thank you for your attention!
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