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Exponential reduction of critical supercurrent jc w.r.t. increasing grain

boundary misalignment angle

see e.g. review by Hilgenkamp and Mannhart, RMP (2002)

Practical motivation

Largest application of conventional superconductors in the form of
superconducting wires for magnets (e.g. in magnetic resonance imaging machines)

High-temperature superconductors not usable for this purpose due to exponential
reduction of current at GBs
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Theoretical motivation

Microscopic modeling of current suppression already by
Graser, Hirschfeld, Kopp, Gutser, Andersen, and Mannhart, Nat. Phys. (2010)
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Microscopic modeling of current suppression already by
Graser, Hirschfeld, Kopp, Gutser, Andersen, and Mannhart, Nat. Phys. (2010)

Reason for suppresion

charge fluctuations (not e.g. suppression of tunneling amplitude)

But still: Quantitatively wrong predictions (current one order of magnitude to large)
Speculation: strong correlations responsible?

Main question of this thesis

Is it possible to model the suppression with a simple approach to strong correlations, the
Gutzwiller approximation? If yes, what are the results?

What could happen?

Qualitatively: Decay still exponential or stronger?

Quantitatively: Reduction in which order of magnitude (augmentation not likely)?
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Overview of model system
Graser, Hirschfeld, Kopp, Gutser, Andersen, and Mannhart, Nat. Phys. (2010)

Current transport pattern
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Overview of model system
Graser, Hirschfeld, Kopp, Gutser, Andersen, and Mannhart, Nat. Phys. (2010)

Results for the angle dependence of the critical current
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RVB groundstate for cuprate superconductors

HHubbard = −
∑

〈ij〉s

tij(c
†
iscjs + h.c.) + U

∑

i

(n̂i↑ −
1
2
)(n̂i↓ −

1
2
)

Proposition for superconducting groundstate of cuprates Anderson, Science (1987)

|ψ〉 ≡ |RVB〉 ≡ P|ψ〉0 where |ψ0〉 ≡ |BCS〉 ≡
∏

k

(uk + vkc
†
k↑c

†
k↓)|vac〉

P ≡
∏

i

(1− n̂i↑n̂i↓)

Focus on the t-J-model in this thesis
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Gutzwiller approximation for homogeneous systems

Evaluation of |ψ〉 ≡ |RVB〉 ≡ P|ψ〉0 using the Gutzwiller approximation (i.e. the
assumption of complete statistical independence of site populations)

Gutzwiller, Phys. Rev. (1965)

Idea of Zhang, Gros, Rice, and Shiba, Supercond. Sci. Technol. (1988)

Employ Gutzwiller approximation for the RVB state in the derivation of an effective
one-particle hamiltonian for the t-J-model

For that use expressions obtained in the thermodynamic limit

〈c†iscjs〉
Gutzw.
≃ g

t(n)〈c†iscjs〉0 , g
t(n) ≡

2(1− n)

2− n

〈Si · Sj 〉
Gutzw.
≃ g

J (n)〈Si · Sj 〉0 , g
J(n) ≡

4

(2− n)2
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Gutzwiller approximation for inhomogeneous systems

Wang, Wang, Chen, and Zhang, Phys. Rev. B (2006) extended formalism to inhomogeneous systems

P ≡
∏

i

Pi where Pi ≡ y
n̂i
i (1− Di) where Di ≡ n̂i↑n̂i↓

This projection operator leads to the renormalization

g
t
ij ≡ g

t
i g

t
j where g

t
i ≡

√
2(1− ni)

(2− ni)

g
J
ij ≡ g

J
i g

J
j where g

J
i ≡

2

2− ni

But: What to use for the description of electron doped systems?
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Gutzwiller approx. for strongly inhom. systems

Wolf, Graser, Loder, and Kopp, arXiv:1106.5759 (2011)

g
t
i ≡

√
2|1− ni |

|1− ni |+ 1

g
J
i ≡

2

|1− ni |+ 1
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2
ni
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∏
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Pi where Pi ≡
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Application to GB

HGB =−
∑

ijs

(g t
ij tij + χ

∗
ij )c

†
iscjs

−
∑

ij

(∆ijc
†
j↑c

†
i↓ + h.c.)−

∑

i

µi n̂i

with ∆ij ≡ ( 3
4
g
J
ij +

1
4
)Jij∆̃ij ,

χij ≡ ( 3
4
g
J
ij −

1
4
)Jij χ̃ij ,
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†
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−
∑

ij

(∆ijc
†
j↑c

†
i↓ + h.c.)−

∑

i

µi n̂i

with ∆ij ≡ ( 3
4
g
J
ij +

1
4
)Jij∆̃ij ,

χij ≡ ( 3
4
g
J
ij −

1
4
)Jij χ̃ij ,

where ∆̃ij ≡
1
2
(〈ci↓cj↑〉+ 〈cj↓ci↑〉), χ̃ij ≡

1
2
(〈c†i↑cj↑〉+ 〈c†i↓cj↓〉), µi ≡ µ− εi , and

g
t
i ≡

√
2|1− ni |

|1− ni |+ 1
and g

J
i ≡

2

|1− ni |+ 1

Solved self-consistently using the Bogoliubov - de Gennes formalism.
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System parameters
Wolf, Graser, Loder, and Kopp, arXiv:1106.5759 (2011)
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Supercurrent through grain boundaries
Wolf, Graser, Loder, and Kopp, arXiv:1106.5759 (2011)
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Density distribution

hole-doped
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Mechanism for current transport
Wolf, Graser, Loder, and Kopp, arXiv:1106.5759 (2011)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

j ij
(i) without correl.
(ii) with correl.

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

-1
-0,5

0

g ijt  t ij

-0,2
0
0,2

0 2 4 6 8 10 12 1416 18
channel number

-12
-8
-4
0

ε i

0 2 4 6 8
-30
-20
-10
0

(a) (b)

(c) (d)

(e)
(f)

17 / 18



Summary

First Part – Theoretical methods

Review of Gutzwiller approximation as employed within the BdG formalism
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Summary
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Review of Gutzwiller approximation as employed within the BdG formalism

Presentation of a particle-hole symmetric form of Gutzwiller factors

Second Part – Application to modeling of the GB problem

Reduction of critical current of one order of magnitude as compared to standard
Hartree-Fock calculation

Quantitative agreement of critical current with experiment

Current transport mechanism: Mott insulator driven reduction in areas in the
neighborhood of the GB – regions around half filling

Conclusion: enhance current carrying properties by further hole-doping

Thank you for your attention!

18 / 18


	Introduction
	Gutzwiller approximation for strongly inhomogeneous systems
	Results for the current through grain boundaries

