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Introduction

Bethe ansatz
Hans Bethe (1931): particular parametrization of eigenstates of the 1D
Heisenberg model Bethe, ZS. f. Phys. (1931)

Today: generalized to whole class of 1D quantum many-body systems

Although eigenvalues and eigenstates of a finite system may be obtained from brute
force numerical diagonalization

Two important advantages of the Bethe ansatz
all eigenstates characterized by set of quantum numbers→ distinction according
to specific physical properties

in many cases: possibility to take thermodynamic limit, no system size
restrictions

One shortcoming
structure of obtained eigenstates in practice often to complicated to obtain
correlation functions
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Ferromagnetic 1D Heisenberg model

Goal
obtain exact eigenvalues and eigenstates with their physical properties

H = −J
N∑

n=1

Sn · Sn+1

= −J
N∑

n=1

[
1
2
(
S+

n S−n+1 + S−n S+
n+1

)
+ Sz

nSz
n+1

]

Basic remarks: eigenstates
reference basis: {|σ1 . . . σN〉}
Bethe ansatz is basis tansformation

rotational symmetry z-axis Sz
T ≡

∑N
n=1 Sz

n conserved: [H,Sz
T ] = 0

⇒ block diagonalization by sorting basis according to 〈Sz
T 〉 = N/2− r

where r = number of down spins
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Intuitive states
Lowest energy states intuitively obtained

block r = 0: groundstate

|F 〉 ≡ | ↑ . . . ↑〉

with energy E0 = −JN/4

block r = 1: one-particle excitations

|ψ〉 = |k〉 ≡
N∑

n=1

a(n)|n〉 where a(n) ≡ 1√
N

eikn and |n〉 ≡ S−n |F 〉

with energy E = J(1− cos k) + E0

magnons |k〉
N one-particle excitations correspond to elementary particles “magnons” with one
particle states |k〉

Note: not the lowest excitations!
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Systematic proceeding to obtain eigenstates
block r = 1: dim= N

|ψ〉 =
N∑

n=1

a(n)|n〉

H|ψ〉 = E |ψ〉 ⇔

2[E − E0]a(n) = J[2a(n)− a(n − 1)− a(n + 1)]

block r = 2: dim=

(
N
2

)
= N(N − 1)/2

|ψ〉 =
∑

1≤n1<n2≤N

a(n1, n2)|n1, n2〉 where |n1, n2〉 ≡ S−n1 S−n2 |F 〉

H|ψ〉 = E |ψ〉 ⇔

2[E − E0]a(n1, n2) = J[4a(n1, n2)−a(n1−1, n2)

− a(n1 +1, n2)− a(n1, n2−1)− a(n1, n2 +1)] for n2 > n1 +1

2[E − E0]a(n1, n2) = J[2a(n1, n2)− a(n1−1, n2)− a(n1, n2 +1)]

for n2 = n1 +1
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Two magnon excitations – eigenstates

Solution by parametrization

a(n1, n2) = Aei(k1n1+k2n2) + A′ei(k1n2+k2n1)

where
A
A′
≡ eiθ = −ei(k1+k2) + 1− 2eik1

ei(k1+k2) + 1− 2eik2

with energy E = J(1− cos k1) + J(1− cos k2) + E0

Note: only for A = A′ interpretation as direct product of two one-particle states, i.e. of
two non-interacting magnons

To summarize rewrite:

a(n1, n2) = ei(k1n1+k2n2+
1
2 θ) + ei(k1n2+k2n1− 1

2 θ) where 2 cot
θ

2
= cot

k1

2
− cot

k2

2

Translational invariance:

Nk1 = 2πλ1 + θ, Nk2 = 2πλ2 − θ where λi ∈ {0, 1, . . . ,N − 1}

with λi the integer (Bethe) quantum numbers
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Two magnon excitations – eigenstates

Rewrite constraints

2 cot
θ

2
= cot

k1

2
− cot

k2

2
Nk1 = 2πλ1 + θ

Nk2 = 2πλ2 − θ

N(N − 1)/2 solutions:

class 1 (red): λ1 = 0
⇒ k1 = 0, k2 = 2πλ2/N, θ = 0

class 2 (white): λ2 − λ1 ≥ 2
⇒ real solutions k1, k2

class 3 (blue): λ2 − λ1 < 2
⇒ complex solutions
k1 ≡ k

2 + iv , k2 ≡ k
2 − iv

Figure for N = 32 Karbach and Müller, Computers in

Physics (1997)

�1 + �2 = N=2 �1 + �2 = N �1 + �2 = 3N=2

�2 -0 N � 10
�1
6

@@@@@@@@@@@@@
@@@@@@@@@I @@@@@@@@@@@@@

@@@@@@@@@@@@@
@@@@@@@I @@@@@@@@@@@@@

@@@@@@@I
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Two magnon excitations – dispersion

Nk1 = 2πλ1 + θ Nk2 = 2πλ2 − θ
⇒ k = k1 + k2 = 2π(λ1 + λ2)/N

Figure for N = 32 Karbach and Müller, Computers in Physics (1997)

0 1 2 3

k

0

1

2

3

4

(E
 -

 E
0)

/J

C1

C2

C3 , λ1=λ2

C3 , λ1=λ2-1
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Two magnon excitations – physical properties

classification
class 1 + 2: almost free scattering states, i.e. for N →∞ degenerate with direct
product of two non-interacting magnons

class 3: bound states

Figure for N = 32 Karbach and Müller, Computers in Physics (1997)
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Two magnon excitations – class 3: bound states

dispersion in thermodynamic limit (N →∞): E = J
2 (1− cos k) + E0

Figure for N = 128 Karbach and Müller, Computers in Physics (1997)
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Eigenstates – states with r > 2

|ψ〉 =
∑

1≤n1<...<nr≤N a(n1, . . . , nr )|n1, . . . , nr 〉

where a(n1, . . . , nr ) =
∑
P∈Sr

exp
(

i
∑r

j=1 kP jnj + i
2

∑
i<j θP iP j

)

energy: E = J
∑r

j=1(1− cos kj ) + E0

quantum numbers: λi ∈ {0, 1, . . . ,N − 1} determined via

Nki = 2πλi +
∑

j 6=i θij and 2 cot θij
2 = cot ki

2 − cot kj
2 for i, j = 1, . . . , r

Solution becomes tedious for N, r � 1, but
to analyze specific physical properties, it is sufficient to study particular solutions

Bound states
bound states (class 3) in all subspaces r with dispersion E = J

r (1− cos k) + E0

→ lowest energy excitations
→ pure many-body feature
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Antiferromagnetic 1D Heisenberg model

H = J
N∑

n=1

Sn · Sn+1

= J
N∑

n=1

[
1
2
(
S+

n S−n+1 + S−n S+
n+1

)
+ Sz

nSz
n+1

]

Spectrum
Eigenvalues inversed as compared to ferromagnetic Heisenberg model, e.g.
|F 〉 ≡ | ↑ . . . ↑〉 state with highest energy

Goals
ground-state |A〉
magnetic field

excitations

15 / 33



Ground-state

Classical candidate (no eigenstate): Néel state

|N1〉 ≡ |↑↓↑ · · · ↓〉, |N2〉 ≡ |↓↑↓ · · · ↑〉

Intuitive requirements for true ground-state |A〉:

→ full rotational invariance

→ zero magnetization, i.e. r = N/2

Starting from ferromagnetic case:

Construction via excitation of N/2 (interacting) magnons from |F 〉

|A〉 =
∑

1≤n1<...<nr≤N

a(n1, . . . , nr )|n1, . . . , nr 〉 with r = N/2

16 / 33



Ground-state

finite N study reveals

|A〉 ⇔ {λi}A = {1, 3, 5, . . . ,N − 1}

quantum numbers {λi} quantum numbers {Ii}

parametrization {ki}, {θij} parametrization {zi} obtained as

ki ≡ π − φ(zi ) where φ(z) ≡ 2 arctan z

2 cot θij
2 = cot ki

2 − cot kj
2 θij = π sgn[<(zi − zj )]− φ

[
(zi − zj )/2

]
Nki = 2πλi +

∑
j 6=i θij Nφ(zi ) = 2πIi +

∑
j 6=i φ

[
(zi − zj )/2

]
such that

|A〉 ⇔ {Ii}A =

{
−N

4
+

1
2
, − N

4
+

3
2
, . . . ,

N
4
− 1

2

}
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Ground-state

|A〉 ⇔ {Ii}A =

{
−N

4
+

1
2
, − N

4
+

3
2
, . . . ,

N
4
− 1

2

}
obtain zi and with that wave numbers ki by fixed point iteration

Nφ(zi ) = 2πIi +
∑

j 6=i φ
[
(zi − zj )/2

]
⇒ z(n+1)

i = tan
(
π
N Ii + 1

2N

∑
j 6=i 2 arctan

[
(z(n)

i − z(n)
j )/2

])

-3

0

3

-0.2 0 0.2

z i

ZN=Ii/N

(a)

0

1

2

-0.2 0 0.2

k i
/π

ZN=Ii/N

(b)

Karbach, Hu, and Müller, Computers in Physics (1998)
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Energy in the thermodynamic limit

(E − EF )/J =
∑r

i=1 ε(zi ) where ε(zi ) = −2/(1 + z2
i )

(remember (E − EF )/J =
∑r

i=1(1− cos ki )))

where the sum is over Ii ∈
{
−N

4 + 1
2 , −

N
4 + 3

2 , . . . ,
N
4 −

1
2

}

For N →∞ define continuous variable I ≡ Ii/N

(E − EF )/(JN) =
1
N

r∑
i=1

ε(zi ) =
1
N

N
4 −

1
2∑

Ii=− N
4 + 1

2

ε(zIi ) =

∫ 1/4

−1/4
dI ε(zI) =

∫ ∞
−∞

dz σ0ε(zI)

where
σ0 ≡

dI
dz

=
1

4 cosh(πz/4)
from Nφ(zi )=2πIi+

∑
j 6=i 2 arctan

[
(zi−zj )/2

]
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Magnetic field

H = J
N∑

n=1

Sn · Sn+1 − h
N∑

n=1

Sz
n

If field h strong enough
|F 〉 ≡ | ↑ . . . ↑〉 will become ground-state

groundstate |A〉 for very small h

|F 〉 “overtakes” all other states with increasing h

saturation field hS = 2J (=energy difference between state |F 〉 and |k = 0〉)
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Magnetization

-0.6
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0

0 0.25 0.5

(E
 -
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mz=Sz
T/N

(a)

0

0.1

0.2
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0.4

0.5

0 1 2
m

z
h/J

(b)

Karbach, Hu, and Müller, Computers in Physics (1998)

susceptibility
infinite slope at the saturation field is pure quantum feature
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Two-spinon excitations
ground-state

|A〉 ⇔ {Ii}A =

{
−N

4
+

1
2
, − N

4
+

3
2
, . . . ,

N
4
− 1

2

}
N/4-1/2

E0

(0,0)

Eq

(1,1)

Eq

(1,0)

Eq

(0,0)

-N/4+1/2 0

Karbach, Hu, and Müller, Computers in Physics (1998)

Fundamental excitations are pairs of spinons
magnon picture: remove one magnon from |A〉 (N/2→ N/2− 1 quantum
numbers)

spinon picture: representation as array (gaps are spinons)

Note: Spinons spin-1/2 particles, Magnons spin-1 particles
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Two-spinon excitations: dispersion

Sum of two spinon wave numbers q = k̄1 + k̄2

in contrast to N/2− 1 wave numbers ki in magnon picture

0

1

2

3

0.5 1
q/π

0

(E
-E

 )
/J

A

Karbach, Hu, and Müller, Computers in Physics (1998)

dispersion boundaries : εL(q) = π
2 J| sin q|, εU(q) = πJ| sin q

2 |
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Examples for models

Heisenberg model

H = ±J
∑

i

[
1
2
(
S+

i S−i+1 + S−i S+
i+1

)
+ Sz

i Sz
i+1

]

Hubbard model

H = −t
∑

is

(c†iscis + h.c.) + U
∑

i

ni↑ni↓

Kondo model

H =
∑
ks

εk c†kscks + J ψ(r = 0)†sσss′ψ(r = 0)s′ · σ0

s-wave + low energy−→ H = −i
∫

dx ψ(x)†s∂xψ(x)s + ψ(x = 0)†sσss′ψ(x = 0)s′ · σ0
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Hubbard model

First steps of systematic solution allow to elucidate fundamental principles.

Hilbert space of N particles spanned by

|ψ〉 =
∑

n1,...,nN

as1,...,sN (n1, . . . , nN)
∏

i

c†ni si |vac〉

Thus
H|ψ〉 = E |ψ〉 −→ ha = Ea

with
h = −t

∑
j

∆j + U
∑
j<l

δnj nl
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Hubbard model
Take large lattice L→∞
One particle case

h = −t∆

solved by plane waves

Two particle case

h = −t(∆1 + ∆2) + Uδn1,n2

Consider n1 = n2 = n as third boundary for the system
System consists of two regions A ∩ B ≡ [−L, n] ∩ [n, L].

Clearly, in both regions the Hamiltonian is of non-interacting form!

In these subsets the solutions are given by plane waves again!

ansatz:

as1,s2 (n1, n2) = Aeik1n1+ik2n2 (As1,s2 Θ(n1 − n2)︸ ︷︷ ︸
wavefunction in subset A

+ Bs1,s2 Θ(n2 − n1)︸ ︷︷ ︸
wavefunction in subset B

)
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Note: remember the Heisenberg model
block r = 1:

|ψ〉 =
N∑

n=1

a(n)|n〉

H|ψ〉 = E |ψ〉 ⇔

2[E − E0]a(n) = J [2a(n)− a(n − 1)− a(n + 1)]︸ ︷︷ ︸
= ∆a(n)

block r = 2:

|ψ〉 =
∑

1≤n1<n2≤N

a(n1, n2)|n1, n2〉 where |n1, n2〉 ≡ S−n1 S−n2 |F 〉

H|ψ〉 = E |ψ〉 −→

for n2 > n1 +1 : 2[E − E0]a(n1, n2) =

= J [4a(n1, n2)−a(n1−1, n2)− a(n1 +1, n2)− a(n1, n2−1)− a(n1, n2 +1)]︸ ︷︷ ︸
= (∆1 + ∆2)a(n1, n2)

for n2 = n1+1 : 2[E−E0]a(n1, n2) = J[2a(n1, n2)−a(n1−1, n2)−a(n1, n2+1)]
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S-matrix and generalization to N particles (back to Hubbard model)

We had

as1,s2 (n1, n2) = Aeik1n1+ik2n2 (As1,s2 Θ(n1 − n2)︸ ︷︷ ︸
wavefunction in subset A

+ Bs1,s2 Θ(n2 − n1)︸ ︷︷ ︸
wavefunction in subset B

)

Need to relate the amplitudes As1,s2 and Bs1,s2 in both regions:

Bs1,s2 = Ss′1,s
′
2

s1,s2
As′1,s

′
2

Two-particle S-matrix
Describes scattering processes in the basis of free particles!

To be obtained by use of symmetries and the Schroedinger equation at n1 = n2.

Summarize this viewpoint
Hubbard, Heisenberg and Kondo model subject to local interaction.

In the “free” regions, plain waves constitute solutions.

Amplitudes of “free” regions related by two-particle S-matrix.
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Generalization to N particles, Yang Baxter Equation

Generalization to N particles
N + 1 regions are obtained, in all of which solutions are given by plane waves
and the interaction of which is described by the two-particle S-matrix

Expand in plane waves over all permutations PR of regions ≡ Bethe ansatz:

as1,...sN = Ae
∑

j kj nj
∑
PR

As1,...,sN (PR)Θ(nPR )

N = 3 particles:
→ relate the amplitudes of two different regions R1 and R2

A(PR1 ) = S ijS jk SklA(PR2 )

Usually there are several ways to relate different regions. The consistency of the
ansatz requires uniqueness for different paths, i.e.

S23S13S12 = S12S13S23

→ Yang-Baxter equation for three particles
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Summary of Section 4

Yang-Baxter equation
If the S-matrix derived from the Hamiltonian satisfies the Yang-Baxter equation, the
Bethe ansatz for the wave functions is consistent and the model is integrable.

How may the eigenstates fail to have the Bethe form?
Implicit assumption was made: set of wave numbers {ki } is the same for all
regions, i.e. momenta are conserved in interactions.

Much stronger than energy or momentum conservation - except for a fermionic
two-body interaction in 1D (where it is equivalent to momentum conservation).

Feature of integrable models, i.e. of a additional dynamical symmetry expressed
by an infinite number of commuting conserved charges.

Consequences: S-matrix factorizes in two-particle S-matrices,...

But, no problem: all this guaranteed by successful check of the Yang-Baxter
equation.
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Summary of Section 2 and 3 + References

Ferromagnetic and antiferromagnetic Heisenberg model
Exact eigenstates and eigenenergies for the ferromagnetic case.

Lowest excitations are bound states.

Exact ground-state of the antiferromagnetic case in the thermodynamic limit.

Magentic field and two spinon excitations.
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