The Bethe Ansatz Heisenberg Model and Generalizations

F. Alexander Wolf

University of Augsburg

June 22 2011

Contents

2 Ferromagnetic 1D Heisenberg model

3 Antiferromagnetic 1D Heisenberg model

4 Generalizations

Introduction

Bethe ansatz

- Hans Bethe (1931): particular parametrization of eigenstates of the 1D Heisenberg model Bethe, ZS. f. Phys. (1931)
- Today: generalized to whole class of 1D quantum many-body systems

Introduction

Bethe ansatz

- Hans Bethe (1931): particular parametrization of eigenstates of the 1D Heisenberg model Bethe, ZS. f. Phys. (1931)
- Today: generalized to whole class of 1D quantum many-body systems

Although eigenvalues and eigenstates of a finite system may be obtained from brute force numerical diagonalization

Two important advantages of the Bethe ansatz

- all eigenstates characterized by set of quantum numbers → distinction according to specific physical properties
- in many cases: possibility to take thermodynamic limit, no system size restrictions

One shortcoming

 structure of obtained eigenstates in practice often to complicated to obtain correlation functions

Contents

Introduction

Antiferromagnetic 1D Heisenberg model

Ferromagnetic 1D Heisenberg model

Goal

obtain exact eigenvalues and eigenstates with their physical properties

$$H = -J \sum_{n=1}^{N} \mathbf{S}_{n} \cdot \mathbf{S}_{n+1}$$

= $-J \sum_{n=1}^{N} \left[\frac{1}{2} (S_{n}^{+} S_{n+1}^{-} + S_{n}^{-} S_{n+1}^{+}) + S_{n}^{z} S_{n+1}^{z} \right]$

Ferromagnetic 1D Heisenberg model

Goal

obtain exact eigenvalues and eigenstates with their physical properties

$$H = -J \sum_{n=1}^{N} \mathbf{S}_{n} \cdot \mathbf{S}_{n+1}$$

= $-J \sum_{n=1}^{N} \left[\frac{1}{2} \left(S_{n}^{+} S_{n+1}^{-} + S_{n}^{-} S_{n+1}^{+} \right) + S_{n}^{z} S_{n+1}^{z} \right]$

Basic remarks: eigenstates

- reference basis: $\{|\sigma_1 \dots \sigma_N\rangle\}$
- Bethe ansatz is basis tansformation
- rotational symmetry *z*-axis $S_T^z \equiv \sum_{n=1}^N S_n^z$ conserved: $[H, S_T^z] = 0$
 - \Rightarrow block diagonalization by sorting basis according to $\langle S_T^z \rangle = N/2 r$ where r = number of down spins

Intuitive states

Lowest energy states intuitively obtained

• block *r* = 0: groundstate

$$|F\rangle \equiv |\uparrow \dots \uparrow\rangle$$

with energy $E_0 = -JN/4$

Intuitive states

Lowest energy states intuitively obtained

• block *r* = 0: groundstate

$$|F\rangle \equiv |\uparrow \dots \uparrow\rangle$$

with energy $E_0 = -JN/4$

block r = 1: one-particle excitations

$$|\psi\rangle = |k\rangle \equiv \sum_{n=1}^{N} a(n)|n\rangle$$
 where $a(n) \equiv \frac{1}{\sqrt{N}} e^{ikn}$ and $|n\rangle \equiv S_n^-|F\rangle$

with energy $E = J(1 - \cos k) + E_0$

magnons $|k\rangle$

N one-particle excitations correspond to elementary particles "magnons" with one particle states $|k\rangle$

Note: not the lowest excitations!

Systematic proceeding to obtain eigenstates

• block r = 1: dim= N

 $|\psi\rangle = \sum_{n=1}^{N} a(n) |n\rangle$

 $H|\psi\rangle = E|\psi\rangle \Leftrightarrow$ $2[E - E_0]a(n) = J[2a(n) - a(n-1) - a(n+1)]$

Systematic proceeding to obtain eigenstates

• block r = 1: dim = N

 $|\psi\rangle = \sum_{n=1}^{N} a(n) |n\rangle$

$$H|\psi\rangle = E|\psi\rangle \Leftrightarrow$$

$$2[E - E_0]a(n) = J[2a(n) - a(n-1) - a(n+1)]$$
• block $r = 2$: dim= $\binom{N}{2} = N(N-1)/2$

$$|\psi\rangle = \sum_{1 \le n_1 < n_2 \le N} a(n_1, n_2)|n_1, n_2\rangle \quad \text{where} \quad |n_1, n_2\rangle \equiv S_{n_1}^- S_{n_2}^-|F\rangle$$

$$H|\psi\rangle = E|\psi\rangle \Leftrightarrow$$

Systematic proceeding to obtain eigenstates

• block r = 1: dim= N

 $|\psi\rangle = \sum_{n=1}^{N} a(n) |n\rangle$

$$H|\psi\rangle = E|\psi\rangle \Leftrightarrow$$

$$2[E - E_0]a(n) = J[2a(n) - a(n-1) - a(n+1)]$$
• block $r = 2$: dim= $\binom{N}{2} = N(N-1)/2$

$$|\psi\rangle = \sum_{1 \le n_1 < n_2 \le N} a(n_1, n_2)|n_1, n_2\rangle \quad \text{where} \quad |n_1, n_2\rangle \equiv S_{n_1}^- S_{n_2}^- |F\rangle$$

$$H|\psi\rangle = E|\psi\rangle \Leftrightarrow$$

$$2[E - E_0]a(n_1, n_2) = J[4a(n_1, n_2) - a(n_1 - 1, n_2) - a(n_1 + 1, n_2) - a(n_1, n_2 - 1) - a(n_1, n_2 + 1)] \quad \text{for} \quad n_2 > n_1 + 1$$

$$2[E - E_0]a(n_1, n_2) = J[2a(n_1, n_2) - a(n_1 - 1, n_2) - a(n_1, n_2 + 1)]$$

for $n_2 = n_1 + 1$

Solution by parametrization

$$a(n_1, n_2) = Ae^{i(k_1n_1+k_2n_2)} + A'e^{i(k_1n_2+k_2n_1)}$$

where

$$\frac{A}{A'} \equiv e^{i\theta} = -\frac{e^{i(k_1+k_2)} + 1 - 2e^{ik_1}}{e^{i(k_1+k_2)} + 1 - 2e^{ik_2}}$$

with energy $E = J(1 - \cos k_1) + J(1 - \cos k_2) + E_0$

Solution by parametrization

$$a(n_1, n_2) = Ae^{i(k_1n_1+k_2n_2)} + A'e^{i(k_1n_2+k_2n_1)}$$

where

$$\frac{A}{A'} \equiv e^{i\theta} = -\frac{e^{i(k_1+k_2)} + 1 - 2e^{ik_1}}{e^{i(k_1+k_2)} + 1 - 2e^{ik_2}}$$

with energy $E = J(1 - \cos k_1) + J(1 - \cos k_2) + E_0$

Note: only for A = A' interpretation as direct product of two one-particle states, i.e. of two non-interacting magnons

Solution by parametrization

$$a(n_1, n_2) = Ae^{i(k_1n_1+k_2n_2)} + A'e^{i(k_1n_2+k_2n_1)}$$

where

$$\frac{A}{A'} \equiv e^{i\theta} = -\frac{e^{i(k_1+k_2)} + 1 - 2e^{ik_1}}{e^{i(k_1+k_2)} + 1 - 2e^{ik_2}}$$

with energy $E = J(1 - \cos k_1) + J(1 - \cos k_2) + E_0$

Note: only for A = A' interpretation as direct product of two one-particle states, i.e. of two non-interacting magnons

To summarize rewrite:

$$a(n_1, n_2) = e^{i(k_1n_1 + k_2n_2 + \frac{1}{2}\theta)} + e^{i(k_1n_2 + k_2n_1 - \frac{1}{2}\theta)} \quad \text{where} \quad 2\cot\frac{\theta}{2} = \cot\frac{k_1}{2} - \cot\frac{k_2}{2}$$

Solution by parametrization

$$a(n_1, n_2) = Ae^{i(k_1n_1+k_2n_2)} + A'e^{i(k_1n_2+k_2n_1)}$$

where

$$\frac{A}{A'} \equiv e^{i\theta} = -\frac{e^{i(k_1+k_2)} + 1 - 2e^{ik_1}}{e^{i(k_1+k_2)} + 1 - 2e^{ik_2}}$$

with energy $E = J(1 - \cos k_1) + J(1 - \cos k_2) + E_0$

Note: only for A = A' interpretation as direct product of two one-particle states, i.e. of two non-interacting magnons

To summarize rewrite:

$$a(n_1, n_2) = e^{i(k_1n_1 + k_2n_2 + \frac{1}{2}\theta)} + e^{i(k_1n_2 + k_2n_1 - \frac{1}{2}\theta)} \quad \text{where} \quad 2\cot\frac{\theta}{2} = \cot\frac{k_1}{2} - \cot\frac{k_2}{2}$$

Translational invariance:

 $Nk_1 = 2\pi\lambda_1 + \theta$, $Nk_2 = 2\pi\lambda_2 - \theta$ where $\lambda_i \in \{0, 1, \dots, N-1\}$

with λ_i the integer (Bethe) quantum numbers

Rewrite constraints

$$2 \cot \frac{\theta}{2} = \cot \frac{k_1}{2} - \cot \frac{k_2}{2}$$
$$Nk_1 = 2\pi\lambda_1 + \theta$$
$$Nk_2 = 2\pi\lambda_2 - \theta$$

Rewrite constraints

$$2\cot\frac{\theta}{2} = \cot\frac{k_1}{2} - \cot\frac{k_2}{2}$$
$$Nk_1 = 2\pi\lambda_1 + \theta$$
$$Nk_2 = 2\pi\lambda_2 - \theta$$

N(N-1)/2 solutions:

- class 1 (red): $\lambda_1 = 0$ $\Rightarrow k_1 = 0, k_2 = 2\pi \lambda_2 / N, \theta = 0$
- class 2 (white): $\lambda_2 \lambda_1 \ge 2$ \Rightarrow real solutions k_1, k_2
- class 3 (blue): λ₂ λ₁ < 2
 - \Rightarrow complex solutions

$$\kappa_1 \equiv rac{\kappa}{2} + i \mathbf{v}, \kappa_2 \equiv rac{\kappa}{2} - i \mathbf{v}$$

Figure for *N* = 32 Karbach and Müller, Computers in Physics (1997)

Two magnon excitations – dispersion

$$Nk_1 = 2\pi\lambda_1 + \theta \qquad Nk_2 = 2\pi\lambda_2 - \theta$$

$$\Rightarrow k = k_1 + k_2 = 2\pi(\lambda_1 + \lambda_2)/N$$

Figure for N = 32 Karbach and Müller, Computers in Physics (1997)

10/33

k

Two magnon excitations - physical properties

classification

- class 1 + 2: almost free scattering states, i.e. for $N \rightarrow \infty$ degenerate with direct product of two non-interacting magnons
- class 3: bound states

Two magnon excitations - physical properties

classification

- class 1 + 2: almost free scattering states, i.e. for $N \rightarrow \infty$ degenerate with direct product of two non-interacting magnons
- class 3: bound states

k

Figure for N = 32 Karbach and Müller, Computers in Physics (1997)

Two magnon excitations – class 3: bound states

dispersion in thermodynamic limit ($N \rightarrow \infty$): $E = \frac{J}{2}(1 - \cos k) + E_0$

Two magnon excitations – class 3: bound states

dispersion in thermodynamic limit ($N \rightarrow \infty$): $E = \frac{J}{2}(1 - \cos k) + E_0$

Figure for N = 128 Karbach and Müller, Computers in Physics (1997)

$$|\psi\rangle = \sum_{1 \le n_1 < \ldots < n_r \le N} a(n_1, \ldots, n_r) |n_1, \ldots, n_r\rangle$$

where $a(n_1, \ldots, n_r) = \sum_{\mathcal{P} \in S_r} \exp\left(i \sum_{j=1}^r k_{\mathcal{P}j} n_j + \frac{i}{2} \sum_{i < j} \theta_{\mathcal{P}i\mathcal{P}j}\right)$

$$\begin{aligned} |\psi\rangle &= \sum_{1 \le n_1 < \ldots < n_r \le N} a(n_1, \ldots, n_r) | n_1, \ldots, n_r \rangle \\ &\text{where} \quad a(n_1, \ldots, n_r) = \sum_{\mathcal{P} \in S_r} \exp\left(i \sum_{j=1}^r k_{\mathcal{P}j} n_j + \frac{i}{2} \sum_{i < j} \theta_{\mathcal{P}i\mathcal{P}j}\right) \\ &\text{energy:} \quad E = J \sum_{j=1}^r (1 - \cos k_j) + E_0 \end{aligned}$$

$$\begin{aligned} |\psi\rangle &= \sum_{1 \le n_1 < \ldots < n_r \le N} a(n_1, \ldots, n_r) |n_1, \ldots, n_r\rangle \\ \text{where} \quad a(n_1, \ldots, n_r) &= \sum_{\mathcal{P} \in S_r} \exp\left(i \sum_{j=1}^r k_{\mathcal{P}j} n_j + \frac{i}{2} \sum_{i < j} \theta_{\mathcal{P}i\mathcal{P}j}\right) \\ \text{energy:} \quad E &= J \sum_{j=1}^r (1 - \cos k_j) + E_0 \end{aligned}$$

quantum numbers: $\lambda_i \in \{0, 1, \dots, N-1\}$ determined via

$$Nk_i = 2\pi\lambda_i + \sum_{j \neq i} \theta_{ij}$$
 and $2\cot \frac{\theta_{ij}}{2} = \cot \frac{k_i}{2} - \cot \frac{k_j}{2}$ for $i, j = 1, \dots, r$

$$\begin{aligned} |\psi\rangle &= \sum_{1 \le n_1 < \ldots < n_r \le N} a(n_1, \ldots, n_r) | n_1, \ldots, n_r \rangle \\ \text{where} \quad a(n_1, \ldots, n_r) &= \sum_{\mathcal{P} \in S_r} \exp\left(i \sum_{j=1}^r k_{\mathcal{P}j} n_j + \frac{i}{2} \sum_{i < j} \theta_{\mathcal{P}i\mathcal{P}j}\right) \end{aligned}$$

energy: $E = J \sum_{j=1}^r (1 - \cos k_j) + E_0$

quantum numbers: $\lambda_i \in \{0, 1, \dots, N-1\}$ determined via

$$Nk_i = 2\pi\lambda_i + \sum_{j \neq i} \theta_{ij}$$
 and $2\cot \frac{\theta_{ij}}{2} = \cot \frac{k_i}{2} - \cot \frac{k_j}{2}$ for $i, j = 1, \dots, r$

Solution becomes tedious for $N, r \gg 1$, but

to analyze specific physical properties, it is sufficient to study particular solutions

$$\begin{aligned} |\psi\rangle &= \sum_{1 \le n_1 < \ldots < n_r \le N} a(n_1, \ldots, n_r) |n_1, \ldots, n_r\rangle \\ \text{where} \quad a(n_1, \ldots, n_r) &= \sum_{\mathcal{P} \in S_r} \exp\left(i \sum_{j=1}^r k_{\mathcal{P}j} n_j + \frac{i}{2} \sum_{i < j} \theta_{\mathcal{P}i\mathcal{P}j} n_j\right) \end{aligned}$$

energy: $E = J \sum_{j=1}^{r} (1 - \cos k_j) + E_0$

quantum numbers: $\lambda_i \in \{0, 1, \dots, N-1\}$ determined via

$$Nk_i = 2\pi\lambda_i + \sum_{j \neq i} \theta_{ij}$$
 and $2\cot \frac{\theta_{ij}}{2} = \cot \frac{k_i}{2} - \cot \frac{k_j}{2}$ for $i, j = 1, \dots, r$

Solution becomes tedious for $N, r \gg 1$, but

to analyze specific physical properties, it is sufficient to study particular solutions

Bound states

bound states (class 3) in all subspaces r with dispersion $E = \frac{J}{r}(1 - \cos k) + E_0$

- \rightarrow lowest energy excitations
- \rightarrow pure many-body feature

Contents

Introduction

3 Antiferromagnetic 1D Heisenberg model

Antiferromagnetic 1D Heisenberg model

$$H = J \sum_{n=1}^{N} \mathbf{S}_{n} \cdot \mathbf{S}_{n+1}$$

= $J \sum_{n=1}^{N} \left[\frac{1}{2} (S_{n}^{+} S_{n+1}^{-} + S_{n}^{-} S_{n+1}^{+}) + S_{n}^{z} S_{n+1}^{z} \right]$

Spectrum

Eigenvalues inversed as compared to ferromagnetic Heisenberg model, e.g. $|F\rangle \equiv |\uparrow \dots \uparrow\rangle$ state with highest energy

Goals

- ground-state |A>
- magnetic field
- excitations

Classical candidate (no eigenstate): Néel state

$$|\mathcal{N}_1\rangle \equiv |\!\uparrow\downarrow\uparrow\cdots\downarrow\rangle, \ |\mathcal{N}_2\rangle \equiv |\!\downarrow\uparrow\downarrow\cdots\uparrow\rangle$$

Intuitive requirements for true ground-state $|A\rangle$:

- \rightarrow full rotational invariance
- \rightarrow zero magnetization, i.e. r = N/2

Starting from ferromagnetic case:

Construction via excitation of N/2 (interacting) magnons from $|F\rangle$

$$|A\rangle = \sum_{1 \le n_1 < \ldots < n_r \le N} a(n_1, \ldots, n_r) |n_1, \ldots, n_r\rangle$$
 with $r = N/2$

finite N study reveals

$$|A\rangle \quad \Leftrightarrow \quad \{\lambda_i\}_A = \{1, 3, 5, \dots, N-1\}$$

finite N study reveals

 $|A\rangle \quad \Leftrightarrow \quad \{\lambda_i\}_A = \{1, 3, 5, \dots, N-1\}$

quantum numbers $\{\lambda_i\}$	quantum numbers { <i>l_i</i> }
parametrization $\{k_i\}, \{\theta_{ij}\}$	parametrization $\{z_i\}$ obtained as
	$k_i \equiv \pi - \phi(z_i)$ where $\phi(z) \equiv 2 \arctan z$
$2\cotrac{ heta_{ij}}{2}=\cotrac{k_i}{2}-\cotrac{k_j}{2}$	$ heta_{ij} = \pi \operatorname{sgn}[\Re(z_i - z_j)] - \phi[(z_i - z_j)/2]$
$Nk_i = 2\pi\lambda_i + \sum_{j eq i} heta_{ij}$	$N\phi(z_i) = 2\pi I_i + \sum_{j \neq i} \phi[(z_i - z_j)/2]$

such that

$$|A\rangle \quad \Leftrightarrow \quad \{I_i\}_A = \left\{-\frac{N}{4} + \frac{1}{2}, -\frac{N}{4} + \frac{3}{2}, \dots, \frac{N}{4} - \frac{1}{2}\right\}$$

$$|A\rangle \quad \Leftrightarrow \quad \{l_i\}_A = \left\{-\frac{N}{4} + \frac{1}{2}, -\frac{N}{4} + \frac{3}{2}, \dots, \frac{N}{4} - \frac{1}{2}\right\}$$

obtain z_i and with that wave numbers k_i by fixed point iteration

$$N\phi(z_i) = 2\pi I_i + \sum_{j \neq i} \phi[(z_i - z_j)/2]$$

$$\Rightarrow z_i^{(n+1)} = \tan\left(\frac{\pi}{N}I_i + \frac{1}{2N}\sum_{j \neq i} 2\arctan[(z_i^{(n)} - z_j^{(n)})/2]\right)$$

$$|\mathsf{A}\rangle \quad \Leftrightarrow \quad \{I_i\}_{\mathsf{A}} = \left\{-\frac{N}{4} + \frac{1}{2}, -\frac{N}{4} + \frac{3}{2}, \dots, \frac{N}{4} - \frac{1}{2}\right\}$$

obtain z_i and with that wave numbers k_i by fixed point iteration

$$N\phi(z_{i}) = 2\pi I_{i} + \sum_{j \neq i} \phi[(z_{i} - z_{j})/2]$$

$$\Rightarrow z_{i}^{(n+1)} = \tan\left(\frac{\pi}{N}I_{i} + \frac{1}{2N}\sum_{j \neq i} 2 \arctan[(z_{i}^{(n)} - z_{j}^{(n)})/2]\right)$$

$$\stackrel{\text{S}}{\xrightarrow{0}} 0$$

$$\stackrel{\text{G}}{\xrightarrow{-3}} 0$$

$$\stackrel{\text{G}}{\xrightarrow{-0.2}} 0$$

$$\stackrel{\text{G}}{\xrightarrow{0}} 0.2$$

$$\stackrel{\text{G}}{\xrightarrow{0}} 0.2$$

$$\stackrel{\text{G}}{\xrightarrow{0}} 0.2$$

$$\stackrel{\text{G}}{\xrightarrow{0}} 0.2$$

$$\stackrel{\text{G}}{\xrightarrow{-3}} 0.2$$

$$\stackrel{\text{G}}{\xrightarrow{-3}}$$

Karbach, Hu, and Müller, Computers in Physics (1998)

Energy in the thermodynamic limit

$$\begin{split} (E - E_F)/J &= \sum_{i=1}^r \varepsilon(z_i) \quad \text{where} \quad \varepsilon(z_i) &= -2/(1 + z_i^2) \\ & (\text{remember } (E - E_F)/J = \sum_{i=1}^r (1 - \cos k_i))) \\ \text{where the sum is over } I_i \in \left\{ -\frac{N}{4} + \frac{1}{2}, \ -\frac{N}{4} + \frac{3}{2}, \dots, \frac{N}{4} - \frac{1}{2} \right\} \end{split}$$
$$\begin{split} (E - E_F)/J &= \sum_{i=1}^r \varepsilon(z_i) \quad \text{where} \quad \varepsilon(z_i) &= -2/(1 + z_i^2) \\ & (\text{remember } (E - E_F)/J = \sum_{i=1}^r (1 - \cos k_i))) \\ \text{where the sum is over } I_i \in \left\{ -\frac{N}{4} + \frac{1}{2}, \ -\frac{N}{4} + \frac{3}{2}, \dots, \frac{N}{4} - \frac{1}{2} \right\} \end{split}$$

For $N \to \infty$ define continuous variable $I \equiv I_i/N$

$$(E - E_F)/(JN) = \frac{1}{N}\sum_{i=1}^r \varepsilon(z_i)$$

$$\begin{split} (E - E_F)/J &= \sum_{i=1}^r \varepsilon(z_i) \quad \text{where} \quad \varepsilon(z_i) &= -2/(1 + z_i^2) \\ & (\text{remember } (E - E_F)/J = \sum_{i=1}^r (1 - \cos k_i))) \\ \text{where the sum is over } I_i \in \left\{ -\frac{N}{4} + \frac{1}{2}, \quad -\frac{N}{4} + \frac{3}{2}, \dots, \frac{N}{4} - \frac{1}{2} \right\} \end{split}$$

For $N \to \infty$ define continuous variable $I \equiv I_i/N$

$$(E - E_F)/(JN) = \frac{1}{N} \sum_{i=1}^r \varepsilon(z_i) = \frac{1}{N} \sum_{l_i = -\frac{N}{4} + \frac{1}{2}}^{\frac{N}{4} - \frac{1}{2}} \varepsilon(z_{l_i})$$

$$\begin{split} (E - E_F)/J &= \sum_{i=1}^r \varepsilon(z_i) \quad \text{where} \quad \varepsilon(z_i) &= -2/(1 + z_i^2) \\ & (\text{remember } (E - E_F)/J = \sum_{i=1}^r (1 - \cos k_i))) \\ \text{where the sum is over } I_i \in \left\{ -\frac{N}{4} + \frac{1}{2}, \quad -\frac{N}{4} + \frac{3}{2}, \dots, \frac{N}{4} - \frac{1}{2} \right\} \end{split}$$

For $N \to \infty$ define continuous variable $I \equiv I_i/N$

$$(E - E_F)/(JN) = \frac{1}{N} \sum_{i=1}^r \varepsilon(z_i) = \frac{1}{N} \sum_{l_i = -\frac{N}{4} + \frac{1}{2}}^{\frac{N}{4} - \frac{1}{2}} \varepsilon(z_{l_i}) = \int_{-1/4}^{1/4} dI \, \varepsilon(z_l)$$

$$\begin{split} (E - E_F)/J &= \sum_{i=1}^r \varepsilon(z_i) \quad \text{where} \quad \varepsilon(z_i) &= -2/(1 + z_i^2) \\ & (\text{remember } (E - E_F)/J = \sum_{i=1}^r (1 - \cos k_i))) \\ \text{where the sum is over } I_i \in \left\{ -\frac{N}{4} + \frac{1}{2}, \quad -\frac{N}{4} + \frac{3}{2}, \dots, \frac{N}{4} - \frac{1}{2} \right\} \end{split}$$

For $N \to \infty$ define continuous variable $I \equiv I_i/N$

$$(E - E_F)/(JN) = \frac{1}{N} \sum_{i=1}^r \varepsilon(z_i) = \frac{1}{N} \sum_{l_i = -\frac{N}{4} + \frac{1}{2}}^{\frac{N}{4} - \frac{1}{2}} \varepsilon(z_{l_i}) = \int_{-1/4}^{1/4} dI \, \varepsilon(z_l) = \int_{-\infty}^{\infty} dz \, \sigma_0 \varepsilon(z_l)$$

where

$$\sigma_0 \equiv \frac{\mathsf{d}I}{\mathsf{d}z} = \frac{1}{4\cosh(\pi z/4)} \quad \text{from} \quad N\phi(z_i) = 2\pi I_i + \sum_{j \neq i} 2\arctan\left[(z_i - z_j)/2\right]$$

$$\begin{split} (E - E_F)/J &= \sum_{i=1}^r \varepsilon(z_i) \quad \text{where} \quad \varepsilon(z_i) &= -2/(1 + z_i^2) \\ & (\text{remember } (E - E_F)/J = \sum_{i=1}^r (1 - \cos k_i))) \\ \text{where the sum is over } I_i \in \left\{ -\frac{N}{4} + \frac{1}{2}, \quad -\frac{N}{4} + \frac{3}{2}, \dots, \frac{N}{4} - \frac{1}{2} \right\} \end{split}$$

For $N \to \infty$ define continuous variable $I \equiv I_i/N$

$$(E - E_F)/(JN) = \frac{1}{N} \sum_{i=1}^r \varepsilon(z_i) = \frac{1}{N} \sum_{l_i = -\frac{N}{4} + \frac{1}{2}}^{\frac{N}{4} - \frac{1}{2}} \varepsilon(z_{l_i}) = \int_{-1/4}^{1/4} dI \, \varepsilon(z_l) = \int_{-\infty}^{\infty} dz \, \sigma_0 \varepsilon(z_l)$$

where

$$\sigma_0 \equiv \frac{\mathrm{d}I}{\mathrm{d}z} = \frac{1}{4\cosh(\pi z/4)} \quad \text{from} \quad N\phi(z_i) = 2\pi I_i + \sum_{j \neq i} 2\arctan\left[(z_i - z_j)/2\right]$$

such that energy

$$(E-E_F)/(JN) = \ln 2$$

Magnetic field

$$H = J \sum_{n=1}^{N} \mathbf{S}_n \cdot \mathbf{S}_{n+1} - h \sum_{n=1}^{N} S_n^{Z}$$

If field *h* strong enough

 $|F\rangle \equiv |\uparrow \dots \uparrow\rangle$ will become ground-state

- groundstate $|A\rangle$ for very small *h*
- $|F\rangle$ "overtakes" all other states with increasing *h*
- saturation field $h_S = 2J$ (=energy difference between state $|F\rangle$ and $|k = 0\rangle$)

Magnetization

Karbach, Hu, and Müller, Computers in Physics (1998)

susceptibility

infinite slope at the saturation field is pure quantum feature

Two-spinon excitations

ground-state

$$|A\rangle \quad \Leftrightarrow \quad \{l_i\}_A = \left\{-\frac{N}{4} + \frac{1}{2}, -\frac{N}{4} + \frac{3}{2}, \dots, \frac{N}{4} - \frac{1}{2}\right\}$$

Karbach, Hu, and Müller, Computers in Physics (1998)

Two-spinon excitations

ground-state

$$|A\rangle \quad \Leftrightarrow \quad \{h_i\}_A = \left\{-\frac{N}{4} + \frac{1}{2}, -\frac{N}{4} + \frac{3}{2}, \dots, \frac{N}{4} - \frac{1}{2}\right\}$$

Karbach, Hu, and Müller, Computers in Physics (1998)

Fundamental excitations are pairs of spinons

- magnon picture: remove one magnon from |A⟩ (N/2 → N/2 − 1 quantum numbers)
- spinon picture: representation as array (gaps are spinons)

Note: Spinons spin-1/2 particles, Magnons spin-1 particles

Two-spinon excitations: dispersion

Sum of two spinon wave numbers $q = ar{k}_1 + ar{k}_2$

in contrast to N/2 - 1 wave numbers k_i in magnon picture

Karbach, Hu, and Müller, Computers in Physics (1998)

dispersion boundaries : $\epsilon_L(q) = \frac{\pi}{2} J |\sin q|$, $\epsilon_U(q) = \pi J |\sin \frac{q}{2}|$

Contents

Introduction

Ferromagnetic 1D Heisenberg model

Antiferromagnetic 1D Heisenberg model

5 Summary and References

• Heisenberg model

$$H = \pm J \sum_{i} \left[\frac{1}{2} \left(S_{i}^{+} S_{i+1}^{-} + S_{i}^{-} S_{i+1}^{+} \right) + S_{i}^{z} S_{i+1}^{z} \right]$$

• Heisenberg model

$$H = \pm J \sum_{i} \left[\frac{1}{2} \left(S_{i}^{+} S_{i+1}^{-} + S_{i}^{-} S_{i+1}^{+} \right) + S_{i}^{z} S_{i+1}^{z} \right]$$

Hubbard model

$$H = -t \sum_{is} (c_{is}^{\dagger} c_{is} + \text{h.c.}) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

• Heisenberg model

$$H = \pm J \sum_{i} \left[\frac{1}{2} \left(S_{i}^{+} S_{i+1}^{-} + S_{i}^{-} S_{i+1}^{+} \right) + S_{i}^{z} S_{i+1}^{z} \right]$$

Hubbard model

$$H = -t \sum_{is} (c_{is}^{\dagger} c_{is} + \text{h.c.}) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Kondo model

$$H = \sum_{ks} \epsilon_k c_{ks}^{\dagger} c_{ks} + J \ \psi(\mathbf{r} = 0)_s^{\dagger} \sigma_{ss'} \psi(\mathbf{r} = 0)_{s'} \cdot \sigma_0$$

• Heisenberg model

$$H = \pm J \sum_{i} \left[\frac{1}{2} \left(S_{i}^{+} S_{i+1}^{-} + S_{i}^{-} S_{i+1}^{+} \right) + S_{i}^{z} S_{i+1}^{z} \right]$$

Hubbard model

$$H = -t \sum_{is} (c_{is}^{\dagger} c_{is} + \text{h.c.}) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Kondo model

$$H = \sum_{ks} \epsilon_k c_{ks}^{\dagger} c_{ks} + J \psi(\mathbf{r} = 0)_s^{\dagger} \sigma_{ss'} \psi(\mathbf{r} = 0)_{s'} \cdot \sigma_0$$

s-wave + low energy
$$H = -i \int dx \ \psi(x)_s^{\dagger} \partial_x \psi(x)_s + \psi(x = 0)_s^{\dagger} \sigma_{ss'} \psi(x = 0)_{s'} \cdot \sigma_0$$

First steps of systematic solution allow to elucidate fundamental principles.

Hilbert space of N particles spanned by

$$|\psi\rangle = \sum_{n_1,\ldots,n_N} a_{s_1,\ldots,s_N}(n_1,\ldots,n_N) \prod_i c^{\dagger}_{n_i s_i} |vac\rangle$$

First steps of systematic solution allow to elucidate fundamental principles.

Hilbert space of N particles spanned by

$$|\psi\rangle = \sum_{n_1,\ldots,n_N} a_{s_1,\ldots,s_N}(n_1,\ldots,n_N) \prod_i c^{\dagger}_{n_is_i} |\text{vac}\rangle$$

Thus

with

Take large lattice $L \to \infty$

One particle case

$$h = -t\Delta$$

solved by plane waves

Take large lattice $L \to \infty$

One particle case

$$h = -t\Delta$$

solved by plane waves Two particle case

$$h = -t(\Delta_1 + \Delta_2) + U\delta_{n_1,n_2}$$

Take large lattice $L \to \infty$

One particle case

$$h = -t\Delta$$

solved by plane waves

Two particle case

$$h = -t(\Delta_1 + \Delta_2) + U\delta_{n_1,n_2}$$

Consider $n_1 = n_2 = n$ as third boundary for the system

- System consists of two regions $A \cap B \equiv [-L, n] \cap [n, L]$.
- Clearly, in both regions the Hamiltonian is of non-interacting form!
- In these subsets the solutions are given by plane waves again!

Take large lattice $L \to \infty$

One particle case

$$h = -t\Delta$$

solved by plane waves

Two particle case

$$h = -t(\Delta_1 + \Delta_2) + U\delta_{n_1,n_2}$$

Consider $n_1 = n_2 = n$ as third boundary for the system

- System consists of two regions $A \cap B \equiv [-L, n] \cap [n, L]$.
- Clearly, in both regions the Hamiltonian is of non-interacting form!
- In these subsets the solutions are given by plane waves again!

ansatz:

$$a_{s_1,s_2}(n_1,n_2) = \mathcal{A}e^{ik_1n_1+ik_2n_2}(\underbrace{A_{s_1,s_2}\Theta(n_1-n_2)}_{(A_{s_1,s_2}\Theta(n_1-n_2)} + \underbrace{B_{s_1,s_2}\Theta(n_2-n_1)}_{(A_{s_1,s_2}\Theta(n_2-n_1))})$$

wavefunction in subset A wavefunction in subset B

Note: remember the Heisenberg model

block r = 1:

$$|\psi\rangle = \sum_{n=1}^{N} a(n) |n\rangle$$

$$H|\psi\rangle = E|\psi\rangle \Leftrightarrow$$
$$2[E - E_0]a(n) = J\underbrace{[2a(n) - a(n-1) - a(n+1)]}_{= \Delta a(n)}$$

• block r = 2: $|\psi\rangle = \sum_{1 \le n_1 < n_2 \le N} a(n_1, n_2) |n_1, n_2\rangle$ where $|n_1, n_2\rangle \equiv S_{n_1}^- S_{n_2}^- |F\rangle$ $H|\psi\rangle = E|\psi\rangle \longrightarrow$ for $n_2 > n_1 + 1$: $2[E - E_0]a(n_1, n_2) =$ $= J[4a(n_1, n_2) - a(n_1 - 1, n_2) - a(n_1 + 1, n_2) - a(n_1, n_2 - 1) - a(n_1, n_2 + 1)]$ $= (\Delta_1 + \Delta_2)a(n_1, n_2)$

for $n_2 = n_1 + 1$: $2[E - E_0]a(n_1, n_2) = J[2a(n_1, n_2) - a(n_1 - 1, n_2) - a(n_1, n_2 + 1)]$

$$a_{s_1,s_2}(n_1,n_2) = \mathcal{A}e^{ik_1n_1+ik_2n_2}(\underbrace{A_{s_1,s_2}\Theta(n_1-n_2)}_{(1,s_2}+\underbrace{B_{s_1,s_2}\Theta(n_2-n_1)}_{(1,s_2)})$$

wavefunction in subset A wa

wavefunction in subset B

$$a_{s_1,s_2}(n_1,n_2) = \mathcal{A}e^{ik_1n_1+ik_2n_2}(\underbrace{A_{s_1,s_2}\Theta(n_1-n_2)}_{(1,s_1)} + \underbrace{B_{s_1,s_2}\Theta(n_2-n_1)}_{(1,s_1)})$$

wavefunction in subset A wavefunction in subset B

Need to relate the amplitudes A_{s_1,s_2} and B_{s_1,s_2} in both regions:

$$B_{s_1,s_2} = S_{s_1,s_2}^{s_1',s_2'} A_{s_1',s_2'}$$

$$a_{s_1,s_2}(n_1,n_2) = \mathcal{A}e^{ik_1n_1 + ik_2n_2}(\underbrace{A_{s_1,s_2}\Theta(n_1 - n_2)}_{(A_{s_1,s_2}\Theta(n_1 - n_2)} + \underbrace{B_{s_1,s_2}\Theta(n_2 - n_1)}_{(A_{s_1,s_2}\Theta(n_2 - n_1))})$$

wavefunction in subset A wavefunction in subset B

Need to relate the amplitudes A_{s_1,s_2} and B_{s_1,s_2} in both regions:

$$B_{s_1,s_2} = S^{s_1',s_2'}_{s_1,s_2} A_{s_1',s_2'}$$

Two-particle S-matrix

- Describes scattering processes in the basis of free particles!
- To be obtained by use of symmetries and the Schroedinger equation at $n_1 = n_2$.

$$a_{s_1,s_2}(n_1,n_2) = \mathcal{A}e^{ik_1n_1 + ik_2n_2}(\underbrace{A_{s_1,s_2}\Theta(n_1 - n_2)}_{(A_{s_1,s_2}\Theta(n_1 - n_2)} + \underbrace{B_{s_1,s_2}\Theta(n_2 - n_1)}_{(A_{s_1,s_2}\Theta(n_2 - n_1))})$$

wavefunction in subset A wavefunction in subset B

Need to relate the amplitudes A_{s_1,s_2} and B_{s_1,s_2} in both regions:

$$B_{s_1,s_2} = S^{s_1',s_2'}_{s_1,s_2} A_{s_1',s_2'}$$

Two-particle S-matrix

- Describes scattering processes in the basis of free particles!
- To be obtained by use of symmetries and the Schroedinger equation at n₁ = n₂.

Summarize this viewpoint

- Hubbard, Heisenberg and Kondo model subject to local interaction.
- In the "free" regions, plain waves constitute solutions.
- Amplitudes of "free" regions related by two-particle S-matrix.

Generalization to N particles, Yang Baxter Equation

Generalization to N particles

 N + 1 regions are obtained, in all of which solutions are given by plane waves and the interaction of which is described by the two-particle S-matrix

Generalization to N particles, Yang Baxter Equation

Generalization to N particles

- N + 1 regions are obtained, in all of which solutions are given by plane waves and the interaction of which is described by the two-particle S-matrix
- Expand in plane waves over all permutations \mathcal{P}_R of regions \equiv Bethe ansatz:

$$a_{s_1,\ldots,s_N} = \mathcal{A}e^{\sum_j k_j n_j} \sum_{\mathcal{P}_R} A_{s_1,\ldots,s_N}(\mathcal{P}_R)\Theta(n_{\mathcal{P}_R})$$

Generalization to N particles, Yang Baxter Equation

Generalization to N particles

- N + 1 regions are obtained, in all of which solutions are given by plane waves and the interaction of which is described by the two-particle S-matrix
- Expand in plane waves over all permutations \mathcal{P}_R of regions \equiv Bethe ansatz:

$$a_{s_1,\ldots,s_N} = \mathcal{A}e^{\sum_j k_j n_j} \sum_{\mathcal{P}_R} A_{s_1,\ldots,s_N}(\mathcal{P}_R)\Theta(n_{\mathcal{P}_R})$$

N = 3 particles:

 \rightarrow relate the amplitudes of two different regions R_1 and R_2

$$A(\mathcal{P}_{R_1}) = S^{ij}S^{jk}S^{kl}A(\mathcal{P}_{R_2})$$

Usually there are several ways to relate different regions. The consistency of the ansatz requires uniqueness for different paths, i.e.

$$S^{23}S^{13}S^{12} = S^{12}S^{13}S^{23}$$

 \rightarrow Yang-Baxter equation for three particles

Contents

Introduction

Ferromagnetic 1D Heisenberg model

3 Antiferromagnetic 1D Heisenberg model

4 Generalizations

Yang-Baxter equation

If the S-matrix derived from the Hamiltonian satisfies the Yang-Baxter equation, the Bethe ansatz for the wave functions is consistent and the model is integrable.

Yang-Baxter equation

If the S-matrix derived from the Hamiltonian satisfies the Yang-Baxter equation, the Bethe ansatz for the wave functions is consistent and the model is integrable.

Yang-Baxter equation

If the S-matrix derived from the Hamiltonian satisfies the Yang-Baxter equation, the Bethe ansatz for the wave functions is consistent and the model is integrable.

How may the eigenstates fail to have the Bethe form?

Implicit assumption was made: set of wave numbers {k_i} is the same for all regions, i.e. momenta are conserved in interactions.

Yang-Baxter equation

If the S-matrix derived from the Hamiltonian satisfies the Yang-Baxter equation, the Bethe ansatz for the wave functions is consistent and the model is integrable.

- Implicit assumption was made: set of wave numbers {k_i} is the same for all regions, i.e. momenta are conserved in interactions.
- Much stronger than energy or momentum conservation except for a fermionic two-body interaction in 1D (where it is equivalent to momentum conservation).

Yang-Baxter equation

If the S-matrix derived from the Hamiltonian satisfies the Yang-Baxter equation, the Bethe ansatz for the wave functions is consistent and the model is integrable.

- Implicit assumption was made: set of wave numbers {k_i} is the same for all regions, i.e. momenta are conserved in interactions.
- Much stronger than energy or momentum conservation except for a fermionic two-body interaction in 1D (where it is equivalent to momentum conservation).
- Feature of integrable models, i.e. of a additional dynamical symmetry expressed by an infinite number of commuting conserved charges.
- Consequences: S-matrix factorizes in two-particle S-matrices,...

Yang-Baxter equation

If the S-matrix derived from the Hamiltonian satisfies the Yang-Baxter equation, the Bethe ansatz for the wave functions is consistent and the model is integrable.

- Implicit assumption was made: set of wave numbers {k_i} is the same for all regions, i.e. momenta are conserved in interactions.
- Much stronger than energy or momentum conservation except for a fermionic two-body interaction in 1D (where it is equivalent to momentum conservation).
- Feature of integrable models, i.e. of a additional dynamical symmetry expressed by an infinite number of commuting conserved charges.
- Consequences: S-matrix factorizes in two-particle S-matrices,...
- But, no problem: all this guaranteed by successful check of the Yang-Baxter equation.
Summary of Section 2 and 3 + References

Ferromagnetic and antiferromagnetic Heisenberg model

- Exact eigenstates and eigenenergies for the ferromagnetic case.
- Lowest excitations are bound states.

Summary of Section 2 and 3 + References

Ferromagnetic and antiferromagnetic Heisenberg model

- Exact eigenstates and eigenenergies for the ferromagnetic case.
- Lowest excitations are bound states.
- Exact ground-state of the antiferromagnetic case in the thermodynamic limit.
- Magentic field and two spinon excitations.

Summary of Section 2 and 3 + References

Ferromagnetic and antiferromagnetic Heisenberg model

- Exact eigenstates and eigenenergies for the ferromagnetic case.
- Lowest excitations are bound states.
- Exact ground-state of the antiferromagnetic case in the thermodynamic limit.
- Magentic field and two spinon excitations.

References

- Section 1: Bethe, ZS. f. Phys. (1931)
- Section 2: Karbach and Müller, Computers in Physics (1997), arXiv: cond-mat/9809162
- Section 3: Karbach, Hu, and Müller, Computers in Physics (1998), arXiv: cond-mat/9809163
- Section 4: N. Andrei, "Integrable models in condensed matter physics", ICTP lecture notes (1994), arXiv: cond-mat/9408101

Thank you for your attention!