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Introduction

Bethe ansatz

@ Hans Bethe (1931): particular parametrization of eigenstates of the 1D
Heisenberg model Bethe, zs. f. Phys. (1931)

@ Today: generalized to whole class of 1D quantum many-body systems
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Introduction

Bethe ansatz

@ Hans Bethe (1931): particular parametrization of eigenstates of the 1D
Heisenberg model Bethe, zs. . Phys. (1931)

@ Today: generalized to whole class of 1D quantum many-body systems

Although eigenvalues and eigenstates of a finite system may be obtained from brute
force numerical diagonalization

Two important advantages of the Bethe ansatz

@ all eigenstates characterized by set of quantum numbers — distinction according

to specific physical properties
@ in many cases: possibility to take thermodynamic limit, no system size
restrictions

One shortcoming

@ structure of obtained eigenstates in practice often to complicated to obtain
correlation functions
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Ferromagnetic 1D Heisenberg model

Goal J

obtain exact eigenvalues and eigenstates with their physical properties

N
H = —JZSn'SnH

n=1

- _JZ[ (St St + S0 Sii1) + SiSh



Ferromagnetic 1D Heisenberg model

Goal

obtain exact eigenvalues and eigenstates with their physical properties

N
H = —JZSn'SnH

n=1

= _JZ[ (S Sn1 + Sn Spit) + SaShus

Basic remarks: eigenstates

@ reference basis: {|o1 ...on)}
@ Bethe ansatz is basis tansformation
@ rotational symmetry z-axis S7 Zn , S conserved: [H, S7] =

= block diagonalization by sorting basis according to (S7) = N/2 —r
where r = number of down spins




Intuitive states

Lowest energy states intuitively obtained

@ block r = 0: groundstate

with energy Eo = —JN/4
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Intuitive states
Lowest energy states intuitively obtained
@ block r = 0: groundstate
Fy=11...1
with energy Eo = —JN/4
@ block r = 1: one-particle excitations
N 1 ikn

[¥) =|k) = > a(n)|n) where a(n)= NN and

n=1

with energy E = J(1 — cos k) + Ep

I =Sy |F)

magnons |k)
N one-particle excitations correspond to elementary particles “magnons” with one
particle states |k)

Note: not the lowest excitations!



Systematic proceeding to obtain eigenstates

@ block r =1:dim=N
N

[v) =2 _a(n)in

Hig) = El) ¢
2[E — Evla(n) = J[2a(n) —a(n—1) — a(n+ 1)]



Systematic proceeding to obtain eigenstates

@ block r =1:dim=N N

[v) =2 _a(n)in

Hig) = El) ¢ :
2[E — Evla(n) = J[2a(n) —a(n—1) — a(n+ 1)]
@ block r = 2: dim= <g’> =N(N-1)/2

lWy="Y_  a(ni,m)m,m) where |ny,n) =S, S,|F)

1<ni<m<N

Hlp) = Ely) <



Systematic proceeding to obtain eigenstates

@ block r =1:dim=N

Hl) = Ely) &
2[E — Evla(n) = J[2a(n) —a(n—1) — a(n+ 1)]
@ block r = 2: dim= (g’) =N(N-1)/2

lWy="Y_  a(ni,m)m,m) where |ny,n) =S, S,|F)

1<ni<m<N

Hlp) = Ely) <

2[E — Eola(ni, mp) = J[da(m, no)—a(ni—1, n)
—a(m-+1,nm) —a(n,n—1) —a(m,n.+1)] for n > nm+1

2[E — Eola(m, nx) = J[2a(n, me) — a(m—1,n2) — a(ni, me+1)]
for No = nNy+1
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Two magnon excitations — eigenstates
Solution by parametrization

a(ny, np) = Ag'tkim+henz) + A gltkinzthon)

where
A 0 glkithe) | 1 _ gkt
A~ € =" eitkithe) 41 — 2gike

with energy E = J(1 —cos ki) + J(1 —cos k) + Eo

33



Two magnon excitations — eigenstates
Solution by parametrization

a(ny, np) = Ag'tkim+henz) + A gltkinzthon)

where ) )
A 0 el(k1+k2) + 1— zelk1
A € =" eitkithe) 41 — 2gike

with energy E = J(1 —cos ki) + J(1 —cos k) + Eo

Note: only for A = A’ interpretation as direct product of two one-particle states, i.e. of

two non-interacting magnons
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Two magnon excitations — eigenstates
Solution by parametrization

a(ny, np) = Ag'tkim+henz) + A gltkinzthon)
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Two magnon excitations — eigenstates
Solution by parametrization

a(ny, np) = Ag'tkim+henz) + A gltkinzthon)

where ) )
A 0 el(k1+k2) + 1— zelk1
A~ € =" eitkithe) 41 — 2gike

with energy E = J(1 —cos ki) + J(1 —cos k) + Eo

Note: only for A = A’ interpretation as direct product of two one-particle states, i.e. of
two non-interacting magnons

To summarize rewrite:

a(m, np) = elimthenatz0) | gilkintlem=30)  where 2 cot O _ otk _corke
’ 2 2 2

Translational invariance:
Nki =27\ + 0, Nk = 27X, — 6 where X\ € {0,1,....N—1}

with )\; the integer (Bethe) quantum numbers
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Two magnon excitations — eigenstates

Rewrite constraints

0 ki ko
ZcotE _cotE —cotE
Nki =27 +0

Nky =271 — 0
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Two magnon excitations —

Rewrite constraints

0 k ko
200t§ _cotE —cotE
Nk1 :271'A1 + 0
Nk = 212 — 6

N(N —1)/2 solutions:

@ class 1 (red): Ay =0
= k1 :0,k2 = 27T)\2/N,9 =0
@ class 2 (white): Ao — Ay > 2
= real solutions ki, ko
@ class 3 (blue): o — Ay < 2
= complex solutions

k1Eg+I'V,kgEg—I'V

eigenstates

Figure for N = 32 Karbach and Miiller, Computers in
Physics (1997)

AL+ Az = 3N/2

A+ = N/2
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Two magnon excitations — dispersion

Nkz 2271')\2 —0

Nki =27\ +0

ki + ko :271'()\1 —‘r)\g)/N

= k=

32 Karbach and Miller, Computers in Physics (1997)

Figure for N
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Two magnon excitations — physical properties

classification

@ class 1 + 2: almost free scattering states, i.e. for N — oo degenerate with direct
product of two non-interacting magnons

@ class 3: bound states
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Two magnon excitations — physical properties

classification

@ class 1 + 2: almost free scattering states, i.e. for N — co degenerate with direct

product of two non-interacting magnons
@ class 3: bound states

Figure for N = 32 Karbach and Mdiller, Computers in Physics (1997)
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Two magnon excitations — class 3: bound states

dispersion in thermodynamic limit (N — oo): E = 5(1 —cosk) + Ey
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Two magnon excitations — class 3: bound states

dispersion in thermodynamic limit (N — oo): E = “5’(1 —cosk) + Ey

Figure for N = 128 Karbach and Mdiller, Computers in Physics (1997)

la(n,ny)l
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Eigenstates — states with r > 2
[9) = Xicn < cnen @y m)m, o)

where a(n,...,n;) =3, c €Xp (izj(:1 kpinj+ 5>, 973in>
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Eigenstates — states with r > 2
[9) = Xicn < cnen @y m)m, o)

where a(n,...,n;) =3, c €Xp (izj(:1 kpinj+ 5>, 973in>

energy: E=JY ' (1—-cosk)+Eo
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Eigenstates — states with r > 2
[9) = Xicn < cnen @y m)m, o)

where  a(ny,...,n;) = pcg €XP (izj(:1 kpinj+ 5>, 973]7:j>

energy: E=JY ' (1—-cosk)+Eo

quantum numbers: \; € {0,1,..., N — 1} determined via
Nki=2rX\+Y,,6; and  2cot% =coth —coty  forij=1,...r

13/33



Eigenstates — states with r > 2

|v) = E1Sn1<m<nr§,\,a(n1,...,n,)|n1,...,n,)

where  a(ny,...,n;) = pcg €XP (izj(:1 kpinj+ 5>, 97;,7;,-)
energy: E=JY ' (1—-cosk)+Eo
quantum numbers: \; € {0,1,..., N — 1} determined via

Nki=2rX\+Y,,6; and  2cot% =coth —coty  forij=1,...r

Solution becomes tedious for N, r > 1, but
to analyze specific physical properties, it is sufficient to study particular solutions J
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Eigenstates — states with r > 2
9) = Sicmecnen @l om)lm, )
where a(n,...,n;) =3, c €Xp (izj(:1 kpinj+ 5>, 973in>

energy: E=JY ' (1—-cosk)+Eo

quantum numbers: \; € {0,1,..., N — 1} determined via

Nki=2rX\+Y,,6; and  2cot% =coth —coty  forij=1,...r

Solution becomes tedious for N, r > 1, but
to analyze specific physical properties, it is sufficient to study particular solutions

Bound states

bound states (class 3) in all subspaces r with dispersion E = (1 — cos k) + Eo
— lowest energy excitations
— pure many-body feature
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Antiferromagnetic 1D Heisenberg model

N
JZS,,-S,,+1

= JZ[ (S7Smi1 + Sn Sii) + SiSh

T
I

Spectrum

Eigenvalues inversed as compared to ferromagnetic Heisenberg model, e.g.
|Fy=|1...1) state with highest energy

Goals

@ ground-state |A)
@ magnetic field

@ excitations

15/33



Ground-state

Classical candidate (no eigenstate): Néel state

VD) = 14t 4, IAR) = [44d 1)

Intuitive requirements for true ground-state |A):
— full rotational invariance

— zero magnetization, i.e. r = N/2

Starting from ferromagnetic case:
Construction via excitation of N/2 (interacting) magnons from |F)

|A) = Z a(m,...,n)|m,...,n;) with r=N/2

1<ni<...<n <N
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Ground-state

finite N study reveals

[A) < {\N}a={1,8,5,...,N—1}
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Ground-state

finite N study reveals

[A) < {\N}a={1,8,5,...,N—1}

quantum numbers {)\;} quantum numbers {/;}

parametrization {k;}, {60;} parametrization {z;} obtained as

ki=m—¢(z) where ¢(z)=2arctanz

2ot 7 = cot § — cot § 0y = msemlR(z — 2)] ~ 9[( — 2)/2)
Nki =27+ 32 0j No(z) =27l + 3, o[(z - z)/2]
such that N N s v
A = {II}A:{_Z+§’_Z+§" 71—5}
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Ground-state

N 1 N 3 N 1
e ua={-Frg -Fri g3

obtain z; and with that wave numbers k; by fixed point iteration
N(z) = 2nli + 32, ¢[(zi — 7) /2]
=z —tan (ﬁl,— + o Dy 2arctan (2" - z.(”))/z])
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Ground-state

A & {Iha= {

obtain z; and with that wave numbers k; by fixed point iteration

_i_’_f’

N,3 N 1
L

N
4

1
2

N¢(Z/) = 27T/,' —+ Z/?"' ¢>[(z,- — Zj)/Q]
N Zi(n+1) = tan (%I,— + ﬁ > 2arctan [(z;
3 — 2 ‘
@ (b)
0t St
3 L : : 00— ) !
0.2 0 0.2 0.2 0 0.2
Z\=liIN Zp=1iIN

Karbach, Hu, and Miiller, Computers in Physics (1998)

(n) (n)
" -2

2]
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Energy in the thermodynamic limit
(E—EfF)/J=31_,e(z) where &(z)=-2/(1+27)
(remember (E — EF)/J = >_1_,(1 — cos k)))

where the sum is over /; € {7%+%, - +g,...,%—%}

az
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Energy in the thermodynamic limit

(E—EfF)/J=31_,e(z) where &(z)=-2/(1+27)
(remember (E — EF)/J = >_1_,(1 — cos k)))

N 3 N 1
+§»~-~J*§}

where the sum is over /; € {77 +3, -

az

For N — oo define continuous variable / = [;/N

(E~ En)/(N) = & D <(2)
i=1
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Energy in the thermodynamic limit

(E—EfF)/J=31_,e(z) where &(z)=-2/(1+27)
(remember (E — EF)/J = >_1_,(1 — cos k)))

N 3 N 1
+§»~-~J*§}

where the sum is over /; € {77 +3, -

az

For N — oo define continuous variable / = [;/N

Az
rol—

(E — Er)/(JN) = %ZE(Z/) = 1N e(z;)
i=1

=—Ny

~z
=
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Energy in the thermodynamic limit

(E—EfF)/J=31_,e(z) where &(z)=-2/(1+27)
(remember (E — EF)/J = >_1_,(1 — cos k)))
where the sum is over /; € {7%+%, 7%+g,...,%—%}

For N — oo define continuous variable / = [;/N

r 2 1/4
(E—-EFr)/(UN) = 1NZ&(Z;) = 1N e(z,) = / dle(z)
i=1

—1/4
=—Ny /

~z
=
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Energy in the thermodynamic limit

(E—EfF)/J=31_,e(z) where &(z)=-2/(1+27)
(remember (E — EF)/J = >_1_,(1 — cos k)))

N 3 N 1
+§»~-~J*§}

where the sum is over /; € {77 +3, -

az

For N — oo define continuous variable / = [;/N

N
7

o=

r 1/4 o
(E — Er)/(JN) = %Zs(z;) = 1N (z,) = / dle(z) = / dz ooe(2)
i=1 -

—1/4
. /

~z
=

f=—

where
_d/ 1

oo = E = W from  N¢(zj)=2wlj+3;; 2 arctan [(zf—zj)/Z]
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Energy in the thermodynamic limit

(E—EfF)/J=31_,e(z) where &(z)=-2/(1+27)
(remember (E — EF)/J = >_1_,(1 — cos k)))

N 3 N 1
+§»~-~J*§}

where the sum is over /; € {77 +3, -

az

For N — oo define continuous variable / = [;/N

N
7

o=

r 1/4 o
(E — Er)/(JN) = %Zs(z;) = 1N (z,) = / dle(z) = / dz ooe(2)
i=1 -

—1/4
=—Ny /

~z
=

where
_d/ 1

oo = E = W from  N¢(zj)=2wlj+3;; 2 arctan [(zf—zj)/Z]

such that energy
(E—Ef)/(UN)=1In2

19/33



Magnetic field

N N
H = J> 8- Sp1—h>_S;
n=1 n=1

If field h strong enough J

|F) =|1...1) will become ground-state

@ groundstate |A) for very small h
@ |F) “overtakes” all other states with increasing h
@ saturation field hs = 2J (=energy difference between state |F) and |k = 0))

20/33



Magnetization

0 : 05
@ (b)
04t
-02 - i
5 03t 1
iy £
w 04T 1 o2l |
01t 1
-0.6 - i
1 0 1
0 0.25 05 0 1 2
m,=S%/N hJ

Karbach, Hu, and Miiller, Computers in Physics (1998)

infinite slope at the saturation field is pure quantum feature

susceptibility J
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Two-spinon excitations
ground-state

N 1 N 3 N 1
A {/i}A—{—Z+§,—Z+7... 7}

2’ "4 2
-N/4+172 0 N/4-1/2
E(U‘O) (ol NN NeoX NeoX NeiX NeoX Neoi NoN Nei Nei Nei Nei Noi Noi Ne¥ ]
0

.0.0.0.0.0.0.0 0.0.0.0.0.0.0. L]

@

E“‘O) oceo@oececececedecececececeoPoeoe

0.0
E( ) LN NoX Nelple} NelploX NeX Noit IO] Neit Noi Neoit Noi Nelgplel NeoX JNej

Karbach, Hu, and Miller, Computers in Physics (1998)
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Two-spinon excitations

ground-state

N 1 N 3 N 1
A = {II}A—{—Z-FE,—Z+§,~--’Z—§}
-N/4+172 0 N/4-1/2
(U‘O) (ol NN NeoX NeoX NeiX NeoX Neoi NoN Nei Nei Nei Nei Noi Noi Ne¥ ]
E,
E(‘:‘]) epeooececececececececececeo@oede

E“‘O) oceo@oececececedecececececeoPoeoe

0.0
E( ) LN NoX Nelple} NelploX NeX Noit IO] Neit Noi Neoit Noi Nelgplel NeoX JNej

Karbach, Hu, and Miller, Computers in Physics (1998)

Fundamental excitations are pairs of spinons

@ magnon picture: remove one magnon from |A) (N/2 — N/2 — 1 quantum
numbers)

@ spinon picture: representation as array (gaps are spinons)

Note: Spinons spin-1/2 particles, Magnons spin-1 particles
22/33



Two-spinon excitations: dispersion

Sum of two spinon wave numbers g = ki + ko
in contrast to N/2 — 1 wave numbers k; in magnon picture

3 ' E ®
L
. ° )
2 ’ X x ono&ooo-
condessce
= P B R
w e
o g R
1 )
X
) comenc>
% 05 1
q/n

Karbach, Hu, and Miller, Computers in Physics (1998)

dispersion boundaries : e,(q) = §J|sing|, eu(q) = wJ|sin |
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Examples for models

@ Heisenberg model

H= iJZ{ (S7Si1 + S Siq) + S7 S
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Examples for models

@ Heisenberg model

H = iJZ[ (8781 -+ 7 8i) + 7Sk |

@ Hubbard model

= —IZ cles +h.c.) + UZ”/T’M
i
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Examples for models

@ Heisenberg model

H = iJZ[ (8781 -+ 7 8i) + 7Sk |

@ Hubbard model

= —tz cles +h.c.) + UZ”/T’M
i

@ Kondo model

H= Z EkC;SCkS +J 'lﬁ(r = 0)20‘5511l)(r = O)S/ (e

ks
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Examples for models

@ Heisenberg model

H = iJZ[ (8781 -+ 7 8i) + 7Sk |

@ Hubbard model

= —tz cles +h.c.) + UZ”/T’M
i

@ Kondo model

H= Z EkC;SCkS +J 'lﬁ(r = 0)20‘5511l)(r = O)S/ (e

ks

=—i / dx () 10xtb(X)s + (X = 0)foss (X = 0)s - o

s-wave + low energy
— H

25/33



Hubbard model

First steps of systematic solution allow to elucidate fundamental principles.

Hilbert space of N particles spanned by
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Hubbard model

First steps of systematic solution allow to elucidate fundamental principles.

Hilbert space of N particles spanned by

Thus
Hl¢y) = Elyy) — ha=Ea

h=—t> Aj+ U bnp,
i

j<!

with
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Hubbard model

Take large lattice L — oo
One particle case

solved by plane waves
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Hubbard model

Take large lattice L — oo
One particle case

solved by plane waves
Two particle case

h= _t(A1 + AZ) + U6n1,n2
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Hubbard model

Take large lattice L — oo
One particle case

solved by plane waves
Two particle case

h= _t(A1 + Az) + U6n1,n2

Consider ny = n, = n as third boundary for the system

@ System consists of two regions AN B = [—L,n] N [n, L].
@ Clearly, in both regions the Hamiltonian is of non-interacting form!
@ In these subsets the solutions are given by plane waves again!
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Hubbard model

Take large lattice L — oo
One particle case

solved by plane waves
Two particle case

h= _t(A1 + Az) + U6n1,n2

Consider ny = n, = n as third boundary for the system

@ System consists of two regions AN B = [—L,n] N [n, L].
@ Clearly, in both regions the Hamiltonian is of non-interacting form!
@ In these subsets the solutions are given by plane waves again!

ansatz:

as,.5, (M, N2) = A e (Ag, ,©( — 1) + By, 5,0(n2 — 1))

wavefunction in subset A wavefunction in subset B

27/33



Note: remember the Heisenberg model

@ block r=1: N
) = a(n)|n)
Hly) = El¢y) & h
2[E — Eyla(n) = J[2a(n) —a(n—1) —a(n+1)]
= Aa(n)
@ block r =2:
lWy="Y_  a(ni,m)m,m) where |ny,n) =S5, S,I|F)

1<m<m<N

Hly) = Elp) —

for m>m+1: 2[E— Ea(m,n) =
=J[4a(n, )—a(m—1,n) —a(ni+1,m) —a(m,n—1) — a(ny, ne+1)]

= (A1 + Az)a(ny, n2)

for m=nH: 2[E-E]a(m,n:)=J[2a(m,m)—a(m—1,n)—a(n, n=1)]

28/33



S-matrix and generalization to N particles was o Hubara mode)
We had

8s,.5, (M, M2) = AM M2 (AL o ©(ny — n2) + Bsy,5,0(M2 — M)

wavefunction in subset A wavefunction in subset B

29/33



S-matrix and generalization to N particles was o Hubara mode)
We had

as,.5, (M1, M2) = Aeik1n1+ik2n2(As1ys2@(n1 — N2) + Bs; 5,0(n2 — 1))

wavefunction in subset A wavefunction in subset B

Need to relate the amplitudes As, s, and B, s, in both regions:

S1:52
i
BS1a52 - SS1 ,S2 As{,sé
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S-matrix and generalization to N particles was o Hubara mode)
We had

331»52('71 ) n2) = Aeik1n1+ik2n2(AS1vsze(n1 - nZ) + BS1 7329(’72 - n1))

wavefunction in subset A wavefunction in subset B

Need to relate the amplitudes As, s, and B, s, in both regions:

S1:52
,
BS1 S2 ss1 ,S2 As{,sé

Two-particle S-matrix

@ Describes scattering processes in the basis of free particles!
@ To be obtained by use of symmetries and the Schroedinger equation at ny = .
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S-matrix and generalization to N particles was o Hubara mode)
We had

331»52('71 ) n2) = Aeik1n1+ik2n2(AS1vsze(n1 - nZ) + BS1 7329(’72 - n1))

wavefunction in subset A wavefunction in subset B

Need to relate the amplitudes As, s, and B, s, in both regions:

S1:52
,
BS1,52 - ss1 ,S2 As{,sé

Two-particle S-matrix

@ Describes scattering processes in the basis of free particles!
@ To be obtained by use of symmetries and the Schroedinger equation at ny = .

Summarize this viewpoint

@ Hubbard, Heisenberg and Kondo model subject to local interaction.
@ In the “free” regions, plain waves constitute solutions.

@ Amplitudes of “free” regions related by two-particle S-matrix.
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Generalization to N particles, Yang Baxter Equation

Generalization to N particles

@ N + 1 regions are obtained, in all of which solutions are given by plane waves
and the interaction of which is described by the two-particle S-matrix
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Generalization to N particles, Yang Baxter Equation

Generalization to N particles

@ N + 1 regions are obtained, in all of which solutions are given by plane waves
and the interaction of which is described by the two-particle S-matrix

@ Expand in plane waves over all permutations Pg of regions = Bethe ansatz:

dsy,...sy = Aezj ") ZAS1 ,,,,, SN(PR)e(nPR)

Pr
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Generalization to N particles, Yang Baxter Equation

Generalization to N particles

@ N + 1 regions are obtained, in all of which solutions are given by plane waves
and the interaction of which is described by the two-particle S-matrix

@ Expand in plane waves over all permutations Pg of regions = Bethe ansatz:

dsy,...sy = Aezj ") ZAS1 44444 SN(PR)G(HPR)

Pr

N = 3 particles:
— relate the amplitudes of two different regions Ry and R»
A(Pr,) = S'S*S"A(Pg,)
Usually there are several ways to relate different regions. The consistency of the
ansatz requires uniqueness for different paths, i.e.
823813812 _ 812813823
— Yang-Baxter equation for three particles
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Summary of Section 4

Yang-Baxter equation

If the S-matrix derived from the Hamiltonian satisfies the Yang-Baxter equation, the
Bethe ansatz for the wave functions is consistent and the model is integrable.
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Bethe ansatz for the wave functions is consistent and the model is integrable.

How may the eigenstates fail to have the Bethe form?
@ Implicit assumption was made: set of wave numbers {k;} is the same for all
regions, i.e. momenta are conserved in interactions.

@ Much stronger than energy or momentum conservation - except for a fermionic
two—body interaction in 1D (where it is equivalent to momentum conservation).

@ Feature of integrable models, i.e. of a additional dynamical symmetry expressed
by an infinite number of commuting conserved charges.

@ Consequences: S-matrix factorizes in two-particle S-matrices,...

@ But, no problem: all this guaranteed by successful check of the Yang-Baxter
equation.
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Summary of Section 2 and 3 + References

Ferromagnetic and antiferromagnetic Heisenberg model

@ Exact eigenstates and eigenenergies for the ferromagnetic case.
@ Lowest excitations are bound states.
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Thank you for your attention!
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