The Bethe Ansatz
 Heisenberg Model and Generalizations

F. Alexander Wolf
University of Augsburg

June 222011

Contents

(1) Introduction
(2) Ferromagnetic 1D Heisenberg model
(3) Antiferromagnetic 1D Heisenberg model
(4) Generalizations
(5) Summary and References

Introduction

Bethe ansatz

- Hans Bethe (1931): particular parametrization of eigenstates of the 1D Heisenberg model Bethe, Zs. f. Phys. (1931)
- Today: generalized to whole class of 1D quantum many-body systems

Introduction

Bethe ansatz

- Hans Bethe (1931): particular parametrization of eigenstates of the 1D Heisenberg model Bethe, Zs. f. Phys. (1931)
- Today: generalized to whole class of 1D quantum many-body systems

Although eigenvalues and eigenstates of a finite system may be obtained from brute force numerical diagonalization

Two important advantages of the Bethe ansatz

- all eigenstates characterized by set of quantum numbers \rightarrow distinction according to specific physical properties
- in many cases: possibility to take thermodynamic limit, no system size restrictions

One shortcoming

- structure of obtained eigenstates in practice often to complicated to obtain correlation functions

Contents

Introduction

(2) Ferromagnetic 1D Heisenberg model

3 Antiferromagnetic 1D Heisenberg model
4) Generalizations
(5) Summary and References

Ferromagnetic 1D Heisenberg model

Goal

obtain exact eigenvalues and eigenstates with their physical properties

$$
\begin{aligned}
H & =-J \sum_{n=1}^{N} \mathbf{S}_{n} \cdot \mathbf{S}_{n+1} \\
& =-J \sum_{n=1}^{N}\left[\frac{1}{2}\left(S_{n}^{+} S_{n+1}^{-}+S_{n}^{-} S_{n+1}^{+}\right)+S_{n}^{z} S_{n+1}^{z}\right]
\end{aligned}
$$

Ferromagnetic 1D Heisenberg model

Goal

obtain exact eigenvalues and eigenstates with their physical properties

$$
\begin{aligned}
H & =-J \sum_{n=1}^{N} \mathbf{S}_{n} \cdot \mathbf{S}_{n+1} \\
& =-J \sum_{n=1}^{N}\left[\frac{1}{2}\left(S_{n}^{+} S_{n+1}^{-}+S_{n}^{-} S_{n+1}^{+}\right)+S_{n}^{z} S_{n+1}^{z}\right]
\end{aligned}
$$

Basic remarks: eigenstates

- reference basis: $\left\{\left|\sigma_{1} \ldots \sigma_{N}\right\rangle\right\}$
- Bethe ansatz is basis tansformation
- rotational symmetry z-axis $S_{T}^{z} \equiv \sum_{n=1}^{N} S_{n}^{z}$ conserved: $\left[H, S_{T}^{z}\right]=0$ \Rightarrow block diagonalization by sorting basis according to $\left\langle S_{T}^{z}\right\rangle=N / 2-r$ where $r=$ number of down spins

Intuitive states

Lowest energy states intuitively obtained

- block $r=0$: groundstate

$$
|F\rangle \equiv|\uparrow \ldots \uparrow\rangle
$$

with energy $E_{0}=-J N / 4$

Intuitive states

Lowest energy states intuitively obtained

- block $r=0$: groundstate

$$
|F\rangle \equiv|\uparrow \ldots \uparrow\rangle
$$

with energy $E_{0}=-J N / 4$

- block $r=1$: one-particle excitations

$$
|\psi\rangle=|k\rangle \equiv \sum_{n=1}^{N} a(n)|n\rangle \quad \text { where } \quad a(n) \equiv \frac{1}{\sqrt{N}} e^{i k n} \quad \text { and } \quad|n\rangle \equiv S_{n}^{-}|F\rangle
$$

with energy $E=J(1-\cos k)+E_{0}$

magnons $|k\rangle$

N one-particle excitations correspond to elementary particles "magnons" with one particle states |k>

Note: not the lowest excitations!

Systematic proceeding to obtain eigenstates

- block $r=1$: $\operatorname{dim}=N$

$$
|\psi\rangle=\sum_{n=1}^{N} a(n)|n\rangle
$$

$H|\psi\rangle=E|\psi\rangle \Leftrightarrow$

$$
2\left[E-E_{0}\right] a(n)=J[2 a(n)-a(n-1)-a(n+1)]
$$

Systematic proceeding to obtain eigenstates

- block $r=1$: $\operatorname{dim}=N$

$$
|\psi\rangle=\sum_{n=1}^{N} a(n)|n\rangle
$$

$H|\psi\rangle=E|\psi\rangle \Leftrightarrow$

$$
2\left[E-E_{0}\right] a(n)=J[2 a(n)-a(n-1)-a(n+1)]
$$

- block $r=2$: $\operatorname{dim}=\binom{N}{2}=N(N-1) / 2$

$$
|\psi\rangle=\sum_{1 \leq n_{1}<n_{2} \leq N} a\left(n_{1}, n_{2}\right)\left|n_{1}, n_{2}\right\rangle \quad \text { where } \quad\left|n_{1}, n_{2}\right\rangle \equiv S_{n_{1}}^{-} S_{n_{2}}^{-}|F\rangle
$$

$$
H|\psi\rangle=E|\psi\rangle \Leftrightarrow
$$

Systematic proceeding to obtain eigenstates

- block $r=1$: $\operatorname{dim}=N$

$$
|\psi\rangle=\sum_{n=1}^{N} a(n)|n\rangle
$$

$H|\psi\rangle=E|\psi\rangle \Leftrightarrow$

$$
2\left[E-E_{0}\right] a(n)=J[2 a(n)-a(n-1)-a(n+1)]
$$

- block $r=2$: $\operatorname{dim}=\binom{N}{2}=N(N-1) / 2$

$$
|\psi\rangle=\sum_{1 \leq n_{1}<n_{2} \leq N} a\left(n_{1}, n_{2}\right)\left|n_{1}, n_{2}\right\rangle \quad \text { where } \quad\left|n_{1}, n_{2}\right\rangle \equiv S_{n_{1}}^{-} S_{n_{2}}^{-}|F\rangle
$$

$$
H|\psi\rangle=E|\psi\rangle \Leftrightarrow
$$

$$
\begin{aligned}
& 2\left[E-E_{0}\right] a\left(n_{1}, n_{2}\right)=J\left[4 a\left(n_{1}, n_{2}\right)-a\left(n_{1}-1, n_{2}\right)\right. \\
& \left.\quad-a\left(n_{1}+1, n_{2}\right)-a\left(n_{1}, n_{2}-1\right)-a\left(n_{1}, n_{2}+1\right)\right] \quad \text { for } \quad n_{2}>n_{1}+1 \\
& 2\left[E-E_{0}\right] a\left(n_{1}, n_{2}\right)=J\left[2 a\left(n_{1}, n_{2}\right)-a\left(n_{1}-1, n_{2}\right)-a\left(n_{1}, n_{2}+1\right)\right] \\
& \quad \text { for } n_{2}=n_{1}+1
\end{aligned}
$$

Two magnon excitations - eigenstates

Solution by parametrization

$$
a\left(n_{1}, n_{2}\right)=A e^{i\left(k_{1} n_{1}+k_{2} n_{2}\right)}+A^{\prime} e^{i\left(k_{1} n_{2}+k_{2} n_{1}\right)}
$$

where

$$
\frac{A}{A^{\prime}} \equiv e^{i \theta}=-\frac{e^{i\left(k_{1}+k_{2}\right)}+1-2 e^{i k_{1}}}{e^{i\left(k_{1}+k_{2}\right)}+1-2 e^{i k_{2}}}
$$

with energy $E=J\left(1-\cos k_{1}\right)+J\left(1-\cos k_{2}\right)+E_{0}$

Two magnon excitations - eigenstates

Solution by parametrization

$$
a\left(n_{1}, n_{2}\right)=A e^{i\left(k_{1} n_{1}+k_{2} n_{2}\right)}+A^{\prime} e^{i\left(k_{1} n_{2}+k_{2} n_{1}\right)}
$$

where

$$
\frac{A}{A^{\prime}} \equiv e^{i \theta}=-\frac{e^{i\left(k_{1}+k_{2}\right)}+1-2 e^{i k_{1}}}{e^{i\left(k_{1}+k_{2}\right)}+1-2 e^{i k_{2}}}
$$

with energy $E=J\left(1-\cos k_{1}\right)+J\left(1-\cos k_{2}\right)+E_{0}$
Note: only for $A=A^{\prime}$ interpretation as direct product of two one-particle states, i.e. of two non-interacting magnons

Two magnon excitations - eigenstates

Solution by parametrization

$$
a\left(n_{1}, n_{2}\right)=A e^{i\left(k_{1} n_{1}+k_{2} n_{2}\right)}+A^{\prime} e^{i\left(k_{1} n_{2}+k_{2} n_{1}\right)}
$$

where

$$
\frac{A}{A^{\prime}} \equiv e^{i \theta}=-\frac{e^{i\left(k_{1}+k_{2}\right)}+1-2 e^{i k_{1}}}{e^{i\left(k_{1}+k_{2}\right)}+1-2 e^{i k_{2}}}
$$

with energy $E=J\left(1-\cos k_{1}\right)+J\left(1-\cos k_{2}\right)+E_{0}$
Note: only for $A=A^{\prime}$ interpretation as direct product of two one-particle states, i.e. of two non-interacting magnons

To summarize rewrite:

$$
a\left(n_{1}, n_{2}\right)=e^{i\left(k_{1} n_{1}+k_{2} n_{2}+\frac{1}{2} \theta\right)}+e^{i\left(k_{1} n_{2}+k_{2} n_{1}-\frac{1}{2} \theta\right)} \quad \text { where } \quad 2 \cot \frac{\theta}{2}=\cot \frac{k_{1}}{2}-\cot \frac{k_{2}}{2}
$$

Two magnon excitations - eigenstates

Solution by parametrization

$$
a\left(n_{1}, n_{2}\right)=A e^{i\left(k_{1} n_{1}+k_{2} n_{2}\right)}+A^{\prime} e^{i\left(k_{1} n_{2}+k_{2} n_{1}\right)}
$$

where

$$
\frac{A}{A^{\prime}} \equiv e^{i \theta}=-\frac{e^{i\left(k_{1}+k_{2}\right)}+1-2 e^{i k_{1}}}{e^{i\left(k_{1}+k_{2}\right)}+1-2 e^{i k_{2}}}
$$

with energy $E=J\left(1-\cos k_{1}\right)+J\left(1-\cos k_{2}\right)+E_{0}$
Note: only for $A=A^{\prime}$ interpretation as direct product of two one-particle states, i.e. of two non-interacting magnons

To summarize rewrite:

$$
a\left(n_{1}, n_{2}\right)=e^{i\left(k_{1} n_{1}+k_{2} n_{2}+\frac{1}{2} \theta\right)}+e^{i\left(k_{1} n_{2}+k_{2} n_{1}-\frac{1}{2} \theta\right)} \quad \text { where } \quad 2 \cot \frac{\theta}{2}=\cot \frac{k_{1}}{2}-\cot \frac{k_{2}}{2}
$$

Translational invariance:

$$
N k_{1}=2 \pi \lambda_{1}+\theta, \quad N k_{2}=2 \pi \lambda_{2}-\theta \quad \text { where } \quad \lambda_{i} \in\{0,1, \ldots, N-1\}
$$

with λ_{i} the integer (Bethe) quantum numbers

Two magnon excitations - eigenstates

Rewrite constraints

$$
\begin{gathered}
2 \cot \frac{\theta}{2}=\cot \frac{k_{1}}{2}-\cot \frac{k_{2}}{2} \\
N k_{1}=2 \pi \lambda_{1}+\theta \\
N k_{2}=2 \pi \lambda_{2}-\theta
\end{gathered}
$$

Two magnon excitations - eigenstates

Rewrite constraints

$$
\begin{gathered}
2 \cot \frac{\theta}{2}=\cot \frac{k_{1}}{2}-\cot \frac{k_{2}}{2} \\
N k_{1}=2 \pi \lambda_{1}+\theta \\
N k_{2}=2 \pi \lambda_{2}-\theta
\end{gathered}
$$

$N(N-1) / 2$ solutions:

- class 1 (red): $\lambda_{1}=0$ $\Rightarrow k_{1}=0, k_{2}=2 \pi \lambda_{2} / N, \theta=0$
- class 2 (white): $\lambda_{2}-\lambda_{1} \geq 2$ \Rightarrow real solutions k_{1}, k_{2}
- class 3 (blue): $\lambda_{2}-\lambda_{1}<2$
\Rightarrow complex solutions $k_{1} \equiv \frac{k}{2}+i v, k_{2} \equiv \frac{k}{2}-i v$

Figure for $N=32$ Karbach and Müller, Computers in
Physics (1997)

Two magnon excitations - dispersion

$$
\begin{gathered}
N k_{1}=2 \pi \lambda_{1}+\theta \quad N k_{2}=2 \pi \lambda_{2}-\theta \\
\Rightarrow k=k_{1}+k_{2}=2 \pi\left(\lambda_{1}+\lambda_{2}\right) / N
\end{gathered}
$$

Figure for $N=32$ Karbach and Müller, Computers in Physics (1997)

Two magnon excitations - physical properties

classification

- class $1+2$: almost free scattering states, i.e. for $N \rightarrow \infty$ degenerate with direct product of two non-interacting magnons
- class 3: bound states

Two magnon excitations - physical properties

classification

- class $1+2$: almost free scattering states, i.e. for $N \rightarrow \infty$ degenerate with direct product of two non-interacting magnons
- class 3: bound states

Figure for $N=32$ Karbach and Müller, Computers in Physics (1997)

Two magnon excitations - class 3: bound states

dispersion in thermodynamic limit $(N \rightarrow \infty): \quad E=\frac{J}{2}(1-\cos k)+E_{0}$

Two magnon excitations - class 3: bound states

 dispersion in thermodynamic limit $(N \rightarrow \infty): \quad E=\frac{J}{2}(1-\cos k)+E_{0}$Figure for $N=128$ karbach and Müller, Computers in Physics (1997)

Eigenstates - states with $r>2$

$|\psi\rangle=\sum_{1 \leq n_{1}<\ldots<n_{r} \leq N} a\left(n_{1}, \ldots, n_{r}\right)\left|n_{1}, \ldots, n_{r}\right\rangle$
where $\quad a\left(n_{1}, \ldots, n_{r}\right)=\sum_{\mathcal{P} \in S_{r}} \exp \left(i \sum_{j=1}^{r} k_{\mathcal{P} j} n_{j}+\frac{i}{2} \sum_{i<j} \theta_{\mathcal{P} i \mathcal{P} j}\right)$

Eigenstates - states with $r>2$

$|\psi\rangle=\sum_{1 \leq n_{1}<\ldots<n_{r} \leq N} a\left(n_{1}, \ldots, n_{r}\right)\left|n_{1}, \ldots, n_{r}\right\rangle$

$$
\text { where } \quad a\left(n_{1}, \ldots, n_{r}\right)=\sum_{\mathcal{P} \in S_{r}} \exp \left(i \sum_{j=1}^{r} k_{\mathcal{P} j} n_{j}+\frac{i}{2} \sum_{i<j} \theta_{\mathcal{P} i \mathcal{P} j}\right)
$$

energy: $\quad E=J \sum_{j=1}^{r}\left(1-\cos k_{j}\right)+E_{0}$

Eigenstates - states with $r>2$

$|\psi\rangle=\sum_{1 \leq n_{1}<\ldots<n_{r} \leq N} a\left(n_{1}, \ldots, n_{r}\right)\left|n_{1}, \ldots, n_{r}\right\rangle$

$$
\text { where } \quad a\left(n_{1}, \ldots, n_{r}\right)=\sum_{\mathcal{P} \in S_{r}} \exp \left(i \sum_{j=1}^{r} k_{\mathcal{P} j} n_{j}+\frac{i}{2} \sum_{i<j} \theta_{\mathcal{P} i \mathcal{P} j}\right)
$$

energy: $\quad E=J \sum_{j=1}^{r}\left(1-\cos k_{j}\right)+E_{0}$
quantum numbers: $\lambda_{i} \in\{0,1, \ldots, N-1\}$ determined via

$$
N k_{i}=2 \pi \lambda_{i}+\sum_{j \neq i} \theta_{i j} \quad \text { and } \quad 2 \cot \frac{\theta_{i j}}{2}=\cot \frac{k_{i}}{2}-\cot \frac{k_{j}}{2} \quad \text { for } i, j=1, \ldots, r
$$

Eigenstates - states with $r>2$

$|\psi\rangle=\sum_{1 \leq n_{1}<\ldots<n_{r} \leq N} a\left(n_{1}, \ldots, n_{r}\right)\left|n_{1}, \ldots, n_{r}\right\rangle$

$$
\text { where } \quad a\left(n_{1}, \ldots, n_{r}\right)=\sum_{\mathcal{P} \in S_{r}} \exp \left(i \sum_{j=1}^{r} k_{\mathcal{P} j} n_{j}+\frac{i}{2} \sum_{i<j} \theta_{\mathcal{P} i \mathcal{P} j}\right)
$$

energy: $\quad E=J \sum_{j=1}^{r}\left(1-\cos k_{j}\right)+E_{0}$
quantum numbers: $\lambda_{i} \in\{0,1, \ldots, N-1\}$ determined via

$$
N k_{i}=2 \pi \lambda_{i}+\sum_{j \neq i} \theta_{i j} \quad \text { and } \quad 2 \cot \frac{\theta_{i j}}{2}=\cot \frac{k_{i}}{2}-\cot \frac{k_{j}}{2} \quad \text { for } i, j=1, \ldots, r
$$

Solution becomes tedious for $N, r \gg 1$, but

to analyze specific physical properties, it is sufficient to study particular solutions

Eigenstates - states with $r>2$

$|\psi\rangle=\sum_{1 \leq n_{1}<\ldots<n_{r} \leq N} a\left(n_{1}, \ldots, n_{r}\right)\left|n_{1}, \ldots, n_{r}\right\rangle$

$$
\text { where } \quad a\left(n_{1}, \ldots, n_{r}\right)=\sum_{\mathcal{P} \in S_{r}} \exp \left(i \sum_{j=1}^{r} k_{\mathcal{P} j} n_{j}+\frac{i}{2} \sum_{i<j} \theta_{\mathcal{P} i \mathcal{P} j}\right)
$$

energy: $\quad E=J \sum_{j=1}^{r}\left(1-\cos k_{j}\right)+E_{0}$
quantum numbers: $\lambda_{i} \in\{0,1, \ldots, N-1\}$ determined via

$$
N k_{i}=2 \pi \lambda_{i}+\sum_{j \neq i} \theta_{i j} \quad \text { and } \quad 2 \cot \frac{\theta_{i j}}{2}=\cot \frac{k_{i}}{2}-\cot \frac{k_{j}}{2} \quad \text { for } i, j=1, \ldots, r
$$

Solution becomes tedious for $N, r \gg 1$, but

to analyze specific physical properties, it is sufficient to study particular solutions

Bound states

bound states (class 3) in all subspaces r with dispersion $E=\frac{J}{r}(1-\cos k)+E_{0}$
\rightarrow lowest energy excitations
\rightarrow pure many-body feature

Contents

(1) Introduction

2 Ferromagnetic 1D Heisenberg model

(3) Antiferromagnetic 1D Heisenberg model
(4) Generalizations
(5) Summary and References

Antiferromagnetic 1D Heisenberg model

$$
\begin{aligned}
H & =J \sum_{n=1}^{N} \mathbf{S}_{n} \cdot \mathbf{S}_{n+1} \\
& =J \sum_{n=1}^{N}\left[\frac{1}{2}\left(S_{n}^{+} S_{n+1}^{-}+S_{n}^{-} S_{n+1}^{+}\right)+S_{n}^{z} S_{n+1}^{z}\right]
\end{aligned}
$$

Spectrum

Eigenvalues inversed as compared to ferromagnetic Heisenberg model, e.g.
$|F\rangle \equiv|\uparrow \ldots \uparrow\rangle$ state with highest energy

Goals

- ground-state $|A\rangle$
- magnetic field
- excitations

Ground-state

Classical candidate (no eigenstate): Néel state

$$
\left|\mathcal{N}_{1}\right\rangle \equiv|\uparrow \downarrow \uparrow \cdots \downarrow\rangle, \quad\left|\mathcal{N}_{2}\right\rangle \equiv|\downarrow \uparrow \downarrow \cdots \uparrow\rangle
$$

Intuitive requirements for true ground-state $|A\rangle$:
\rightarrow full rotational invariance
\rightarrow zero magnetization, i.e. $r=N / 2$

Starting from ferromagnetic case:
Construction via excitation of $N / 2$ (interacting) magnons from $|F\rangle$

$$
|A\rangle=\sum_{1 \leq n_{1}<\ldots<n_{r} \leq N} a\left(n_{1}, \ldots, n_{r}\right)\left|n_{1}, \ldots, n_{r}\right\rangle \quad \text { with } \quad r=N / 2
$$

Ground-state

finite N study reveals

$$
|A\rangle \Leftrightarrow\left\{\lambda_{i}\right\}_{A}=\{1,3,5, \ldots, N-1\}
$$

Ground-state

finite N study reveals

$$
|A\rangle \quad \Leftrightarrow \quad\left\{\lambda_{i}\right\}_{A}=\{1,3,5, \ldots, N-1\}
$$

quantum numbers $\left\{\lambda_{i}\right\}$
parametrization $\left\{k_{i}\right\},\left\{\theta_{i j}\right\}$

$$
\begin{array}{ll}
& k_{i} \equiv \pi-\phi\left(z_{i}\right) \quad \text { where } \quad \phi(z) \equiv 2 \arctan z \\
2 \cot \frac{\theta_{i j}}{2}=\cot \frac{k_{i}}{2}-\cot \frac{k_{j}}{2} & \theta_{i j}=\pi \operatorname{sgn}\left[\Re\left(z_{i}-z_{j}\right)\right]-\phi\left[\left(z_{i}-z_{j}\right) / 2\right] \\
N k_{i}=2 \pi \lambda_{i}+\sum_{j \neq i} \theta_{i j} & N \phi\left(z_{i}\right)=2 \pi I_{i}+\sum_{j \neq i} \phi\left[\left(z_{i}-z_{j}\right) / 2\right]
\end{array}
$$

quantum numbers $\left\{l_{i}\right\}$
parametrization $\left\{z_{i}\right\}$ obtained as
such that

$$
|A\rangle \quad \Leftrightarrow \quad\left\{I_{i}\right\}_{A}=\left\{-\frac{N}{4}+\frac{1}{2},-\frac{N}{4}+\frac{3}{2}, \ldots, \frac{N}{4}-\frac{1}{2}\right\}
$$

Ground-state

$$
|A\rangle \Leftrightarrow\left\{l_{i}\right\}_{A}=\left\{-\frac{N}{4}+\frac{1}{2},-\frac{N}{4}+\frac{3}{2}, \ldots, \frac{N}{4}-\frac{1}{2}\right\}
$$

obtain z_{i} and with that wave numbers k_{i} by fixed point iteration

$$
N \phi\left(z_{i}\right)=2 \pi l_{i}+\sum_{j \neq i} \phi\left[\left(z_{i}-z_{j}\right) / 2\right]
$$

$$
\Rightarrow z_{i}^{(n+1)}=\tan \left(\frac{\pi}{N} l_{i}+\frac{1}{2 N} \sum_{j \neq i} 2 \arctan \left[\left(z_{i}^{(n)}-z_{j}^{(n)}\right) / 2\right]\right)
$$

Ground-state

$$
\text { |A } \Leftrightarrow\{i\}_{A}=\left\{-\frac{N}{4}+\frac{1}{2},-\frac{N}{4}+\frac{3}{2}, \ldots, \frac{N}{4}-\frac{1}{2}\right\}
$$

obtain z_{i} and with that wave numbers k_{i} by fixed point iteration

$$
N \phi\left(z_{i}\right)=2 \pi l_{i}+\sum_{j \neq i} \phi\left[\left(z_{i}-z_{j}\right) / 2\right]
$$

$$
\Rightarrow z_{i}^{(n+1)}=\tan \left(\frac{\pi}{N} l_{i}+\frac{1}{2 N} \sum_{j \neq i} 2 \arctan \left[\left(z_{i}^{(n)}-z_{j}^{(n)}\right) / 2\right]\right)
$$

Energy in the thermodynamic limit

$$
\begin{aligned}
\left(E-E_{F}\right) / J=\sum_{i=1}^{r} \varepsilon\left(z_{i}\right) \text { where } \quad \varepsilon\left(z_{i}\right) & =-2 /\left(1+z_{i}^{2}\right) \\
& \left.\left(\text { remember }\left(E-E_{F}\right) / J=\sum_{i=1}^{r}\left(1-\cos k_{i}\right)\right)\right)
\end{aligned}
$$

where the sum is over $l_{i} \in\left\{-\frac{N}{4}+\frac{1}{2},-\frac{N}{4}+\frac{3}{2}, \ldots, \frac{N}{4}-\frac{1}{2}\right\}$

Energy in the thermodynamic limit

$$
\left(E-E_{F}\right) / J=\sum_{i=1}^{r} \varepsilon\left(z_{i}\right) \quad \text { where } \quad \varepsilon\left(z_{i}\right)=-2 /\left(1+z_{i}^{2}\right)
$$

$$
\left.\left(\operatorname{remember}\left(E-E_{F}\right) / J=\sum_{i=1}^{r}\left(1-\cos k_{i}\right)\right)\right)
$$

where the sum is over $l_{i} \in\left\{-\frac{N}{4}+\frac{1}{2},-\frac{N}{4}+\frac{3}{2}, \ldots, \frac{N}{4}-\frac{1}{2}\right\}$

For $N \rightarrow \infty$ define continuous variable $I \equiv I_{i} / N$

$$
\left(E-E_{F}\right) /(J N)=\frac{1}{N} \sum_{i=1}^{r} \varepsilon\left(z_{i}\right)
$$

Energy in the thermodynamic limit

$$
\left(E-E_{F}\right) / J=\sum_{i=1}^{r} \varepsilon\left(z_{i}\right) \quad \text { where } \quad \varepsilon\left(z_{i}\right)=-2 /\left(1+z_{i}^{2}\right)
$$

$$
\left.\left(\operatorname{remember}\left(E-E_{F}\right) / J=\sum_{i=1}^{r}\left(1-\cos k_{i}\right)\right)\right)
$$

where the sum is over $l_{i} \in\left\{-\frac{N}{4}+\frac{1}{2},-\frac{N}{4}+\frac{3}{2}, \ldots, \frac{N}{4}-\frac{1}{2}\right\}$

For $N \rightarrow \infty$ define continuous variable $I \equiv I_{i} / N$

$$
\left(E-E_{F}\right) /(J N)=\frac{1}{N} \sum_{i=1}^{r} \varepsilon\left(z_{i}\right)=\frac{1}{N} \sum_{l_{i}=-\frac{N}{4}+\frac{1}{2}}^{\frac{N}{4}-\frac{1}{2}} \varepsilon\left(z_{i}\right)
$$

Energy in the thermodynamic limit

$$
\left(E-E_{F}\right) / J=\sum_{i=1}^{r} \varepsilon\left(z_{i}\right) \quad \text { where } \quad \varepsilon\left(z_{i}\right)=-2 /\left(1+z_{i}^{2}\right)
$$

$$
\left.\left(\operatorname{remember}\left(E-E_{F}\right) / J=\sum_{i=1}^{r}\left(1-\cos k_{i}\right)\right)\right)
$$

where the sum is over $l_{i} \in\left\{-\frac{N}{4}+\frac{1}{2},-\frac{N}{4}+\frac{3}{2}, \ldots, \frac{N}{4}-\frac{1}{2}\right\}$

For $N \rightarrow \infty$ define continuous variable $I \equiv I_{i} / N$

$$
\left(E-E_{F}\right) /(J N)=\frac{1}{N} \sum_{i=1}^{r} \varepsilon\left(z_{i}\right)=\frac{1}{N} \sum_{l_{i}=-\frac{N}{4}+\frac{1}{2}}^{\frac{N}{4}-\frac{1}{2}} \varepsilon\left(z_{i}\right)=\int_{-1 / 4}^{1 / 4} \mathrm{~d} / \varepsilon\left(z_{l}\right)
$$

Energy in the thermodynamic limit

$\left(E-E_{F}\right) / J=\sum_{i=1}^{r} \varepsilon\left(z_{i}\right) \quad$ where $\quad \varepsilon\left(z_{i}\right)=-2 /\left(1+z_{i}^{2}\right)$

$$
\left.\left(\operatorname{remember}\left(E-E_{F}\right) / J=\sum_{i=1}^{r}\left(1-\cos k_{i}\right)\right)\right)
$$

where the sum is over $l_{i} \in\left\{-\frac{N}{4}+\frac{1}{2},-\frac{N}{4}+\frac{3}{2}, \ldots, \frac{N}{4}-\frac{1}{2}\right\}$

For $N \rightarrow \infty$ define continuous variable $I \equiv I_{i} / N$

$$
\left(E-E_{F}\right) /(J N)=\frac{1}{N} \sum_{i=1}^{r} \varepsilon\left(z_{i}\right)=\frac{1}{N} \sum_{l_{i}=-\frac{N}{4}+\frac{1}{2}}^{\frac{N}{4}-\frac{1}{2}} \varepsilon\left(z_{i}\right)=\int_{-1 / 4}^{1 / 4} \mathrm{~d} l \varepsilon\left(z_{l}\right)=\int_{-\infty}^{\infty} \mathrm{d} z \sigma_{0} \varepsilon\left(z_{l}\right)
$$

where

$$
\sigma_{0} \equiv \frac{\mathrm{~d} l}{\mathrm{~d} z}=\frac{1}{4 \cosh (\pi z / 4)} \quad \text { from } \quad N \phi\left(z_{i}\right)=2 \pi \pi_{i}+\sum_{j \neq i} 2 \arctan \left[\left(z_{i}-z_{j}\right) / 2\right]
$$

Energy in the thermodynamic limit

$\left(E-E_{F}\right) / J=\sum_{i=1}^{r} \varepsilon\left(z_{i}\right) \quad$ where $\quad \varepsilon\left(z_{i}\right)=-2 /\left(1+z_{i}^{2}\right)$

$$
\left.\left(\operatorname{remember}\left(E-E_{F}\right) / J=\sum_{i=1}^{r}\left(1-\cos k_{i}\right)\right)\right)
$$

where the sum is over $l_{i} \in\left\{-\frac{N}{4}+\frac{1}{2},-\frac{N}{4}+\frac{3}{2}, \ldots, \frac{N}{4}-\frac{1}{2}\right\}$

For $N \rightarrow \infty$ define continuous variable $I \equiv I_{i} / N$

$$
\left(E-E_{F}\right) /(J N)=\frac{1}{N} \sum_{i=1}^{r} \varepsilon\left(z_{i}\right)=\frac{1}{N} \sum_{l_{i}=-\frac{N}{4}+\frac{1}{2}}^{\frac{N}{4}-\frac{1}{2}} \varepsilon\left(z_{i}\right)=\int_{-1 / 4}^{1 / 4} \mathrm{~d} l \varepsilon\left(z_{l}\right)=\int_{-\infty}^{\infty} \mathrm{d} z \sigma_{0} \varepsilon\left(z_{l}\right)
$$

where

$$
\sigma_{0} \equiv \frac{\mathrm{~d} l}{\mathrm{~d} z}=\frac{1}{4 \cosh (\pi z / 4)} \quad \text { from } \quad N \phi\left(z_{i}\right)=2 \pi \pi_{i}+\sum_{j \neq i} 2 \arctan \left[\left(z_{i}-z_{j}\right) / 2\right]
$$

such that energy

$$
\left(E-E_{F}\right) /(J N)=\ln 2
$$

Magnetic field

$$
H=J \sum_{n=1}^{N} \mathbf{S}_{n} \cdot \mathbf{S}_{n+1}-h \sum_{n=1}^{N} S_{n}^{z}
$$

If field h strong enough
 $|F\rangle \equiv|\uparrow \ldots \uparrow\rangle$ will become ground-state

- groundstate $|A\rangle$ for very small h
- $|F\rangle$ "overtakes" all other states with increasing h
- saturation field $h_{S}=2 J$ (=energy difference between state $|F\rangle$ and $|k=0\rangle$)

Magnetization

Karbach, Hu, and Müller, Computers in Physics (1998)

susceptibility

infinite slope at the saturation field is pure quantum feature

Two-spinon excitations

ground-state

$$
|A\rangle \quad \Leftrightarrow \quad\left\{I_{i}\right\}_{A}=\left\{-\frac{N}{4}+\frac{1}{2},-\frac{N}{4}+\frac{3}{2}, \ldots, \frac{N}{4}-\frac{1}{2}\right\}
$$

Karbach, Hu, and Müller, Computers in Physics (1998)

Two-spinon excitations

ground-state

$$
|A\rangle \Leftrightarrow\{l i\}_{A}=\left\{-\frac{N}{4}+\frac{1}{2},-\frac{N}{4}+\frac{3}{2}, \ldots, \frac{N}{4}-\frac{1}{2}\right\}
$$

Karbach, Hu, and Müller, Computers in Physics (1998)

Fundamental excitations are pairs of spinons

- magnon picture: remove one magnon from $|A\rangle \quad(N / 2 \rightarrow N / 2-1$ quantum numbers)
- spinon picture: representation as array (gaps are spinons)

Note: Spinons spin-1/2 particles, Magnons spin-1 particles

Two-spinon excitations: dispersion

Sum of two spinon wave numbers $q=\bar{k}_{1}+\bar{k}_{2}$
in contrast to $N / 2-1$ wave numbers k_{i} in magnon picture

Karbach, Hu, and Müller, Computers in Physics (1998)
dispersion boundaries : $\epsilon_{L}(q)=\frac{\pi}{2} J|\sin q|, \quad \epsilon_{U}(q)=\pi J\left|\sin \frac{q}{2}\right|$

Contents

(1) Introduction

(2) Ferromagnetic 1D Heisenberg model

3 Antiferromagnetic 1D Heisenberg model
(4) Generalizations
(5) Summary and References

Examples for models

- Heisenberg model

$$
H= \pm J \sum_{i}\left[\frac{1}{2}\left(S_{i}^{+} S_{i+1}^{-}+S_{i}^{-} S_{i+1}^{+}\right)+S_{i}^{z} S_{i+1}^{z}\right]
$$

Examples for models

- Heisenberg model

$$
H= \pm J \sum_{i}\left[\frac{1}{2}\left(S_{i}^{+} S_{i+1}^{-}+S_{i}^{-} S_{i+1}^{+}\right)+S_{i}^{z} S_{i+1}^{z}\right]
$$

- Hubbard model

$$
H=-t \sum_{i s}\left(c_{i s}^{\dagger} c_{i s}+\text { h.c. }\right)+U \sum_{i} n_{i \uparrow} n_{i \downarrow}
$$

Examples for models

- Heisenberg model

$$
H= \pm J \sum_{i}\left[\frac{1}{2}\left(S_{i}^{+} S_{i+1}^{-}+S_{i}^{-} S_{i+1}^{+}\right)+S_{i}^{z} S_{i+1}^{z}\right]
$$

- Hubbard model

$$
H=-t \sum_{i s}\left(c_{i s}^{\dagger} c_{i s}+\text { h.c. }\right)+U \sum_{i} n_{i \uparrow} n_{i \downarrow}
$$

- Kondo model

$$
H=\sum_{k s} \epsilon_{\boldsymbol{k}} c_{k s}^{\dagger} c_{\boldsymbol{k s}}+J \psi(\boldsymbol{r}=0)_{s}^{\dagger} \boldsymbol{\sigma}_{s s^{\prime}} \psi(\boldsymbol{r}=0)_{s^{\prime}} \cdot \boldsymbol{\sigma}_{0}
$$

Examples for models

- Heisenberg model

$$
H= \pm J \sum_{i}\left[\frac{1}{2}\left(S_{i}^{+} S_{i+1}^{-}+S_{i}^{-} S_{i+1}^{+}\right)+S_{i}^{z} S_{i+1}^{z}\right]
$$

- Hubbard model

$$
H=-t \sum_{i s}\left(c_{i s}^{\dagger} c_{i s}+\text { h.c. }\right)+U \sum_{i} n_{i \uparrow} n_{i \downarrow}
$$

- Kondo model

$$
H=\sum_{\boldsymbol{k s}} \epsilon_{\boldsymbol{k}} c_{k s}^{\dagger} c_{\boldsymbol{k s}}+J \psi(\boldsymbol{r}=0)_{s}^{\dagger} \boldsymbol{\sigma}_{s s^{\prime}} \psi(\boldsymbol{r}=0)_{s^{\prime}} \cdot \boldsymbol{\sigma}_{0}
$$

$$
\xrightarrow{s-\text { wave }+ \text { low energy }} H=-i \int \mathrm{~d} x \psi(x)_{s}^{\dagger} \partial_{x} \psi(x)_{s}+\psi(x=0)_{s}^{\dagger} \sigma_{s s^{\prime}} \psi(x=0)_{s^{\prime}} \cdot \sigma_{0}
$$

Hubbard model

First steps of systematic solution allow to elucidate fundamental principles.

Hilbert space of N particles spanned by

$$
|\psi\rangle=\sum_{n_{1}, \ldots, n_{N}} a_{s_{1}, \ldots, s_{N}}\left(n_{1}, \ldots, n_{N}\right) \prod_{i} c_{n_{i}, s_{i}}^{\dagger}|\mathrm{vac}\rangle
$$

Hubbard model

First steps of systematic solution allow to elucidate fundamental principles.

Hilbert space of N particles spanned by

$$
|\psi\rangle=\sum_{n_{1}, \ldots, n_{N}} a_{s_{1}, \ldots, s_{N}}\left(n_{1}, \ldots, n_{N}\right) \prod_{i} c_{n_{i} s_{i}}^{\dagger}|\mathrm{vac}\rangle
$$

Thus

$$
H|\psi\rangle=E|\psi\rangle \quad \longrightarrow \quad h \mathbf{a}=E \boldsymbol{a}
$$

with

$$
h=-t \sum_{j} \Delta_{j}+U \sum_{j<1} \delta_{n_{j} n_{l}}
$$

Hubbard model

Take large lattice $L \rightarrow \infty$
One particle case

$$
h=-t \Delta
$$

solved by plane waves

Hubbard model

Take large lattice $L \rightarrow \infty$

One particle case

$$
h=-t \Delta
$$

solved by plane waves
Two particle case

$$
h=-t\left(\Delta_{1}+\Delta_{2}\right)+U \delta_{n_{1}, n_{2}}
$$

Hubbard model

Take large lattice $L \rightarrow \infty$
One particle case

$$
h=-t \Delta
$$

solved by plane waves
Two particle case

$$
h=-t\left(\Delta_{1}+\Delta_{2}\right)+U \delta_{n_{1}, n_{2}}
$$

Consider $n_{1}=n_{2}=n$ as third boundary for the system

- System consists of two regions $A \cap B \equiv[-L, n] \cap[n, L]$.
- Clearly, in both regions the Hamiltonian is of non-interacting form!
- In these subsets the solutions are given by plane waves again!

Hubbard model

Take large lattice $L \rightarrow \infty$

One particle case

$$
h=-t \Delta
$$

solved by plane waves
Two particle case

$$
h=-t\left(\Delta_{1}+\Delta_{2}\right)+U \delta_{n_{1}, n_{2}}
$$

Consider $n_{1}=n_{2}=n$ as third boundary for the system

- System consists of two regions $A \cap B \equiv[-L, n] \cap[n, L]$.
- Clearly, in both regions the Hamiltonian is of non-interacting form!
- In these subsets the solutions are given by plane waves again!
ansatz:

$$
a_{s_{1}, s_{2}}\left(n_{1}, n_{2}\right)=\mathcal{A} e^{i k_{1} n_{1}+i k_{2} n_{2}}(\underbrace{A_{s_{1}, s_{2}} \Theta\left(n_{1}-n_{2}\right)}_{\text {wavefunction in subset } \mathrm{A}}+\underbrace{B_{s_{1}, s_{2}} \Theta\left(n_{2}-n_{1}\right)}_{\text {wavefunction in subset } \mathrm{B}})
$$

Note: remember the Heisenberg model

- block $r=1$:

$$
|\psi\rangle=\sum_{n=1}^{N} a(n)|n\rangle
$$

$H|\psi\rangle=E|\psi\rangle \Leftrightarrow$

$$
2\left[E-E_{0}\right] a(n)=J \underbrace{[2 a(n)-a(n-1)-a(n+1)]}_{=\Delta a(n)}
$$

- block $r=2$:

$$
\begin{aligned}
& \quad|\psi\rangle=\sum_{1 \leq n_{1}<n_{2} \leq N} a\left(n_{1}, n_{2}\right)\left|n_{1}, n_{2}\right\rangle \quad \text { where }\left|n_{1}, n_{2}\right\rangle \equiv S_{n_{1}}^{-} S_{n_{2}}^{-}|F\rangle \\
& H|\psi\rangle=E|\psi\rangle \longrightarrow \\
& \text { for } \quad n_{2}>n_{1}+1: \quad 2\left[E-E_{0}\right] a\left(n_{1}, n_{2}\right)= \\
& =J \underbrace{\left[4 a\left(n_{1}, n_{2}\right)-a\left(n_{1}-1, n_{2}\right)-a\left(n_{1}+1, n_{2}\right)-a\left(n_{1}, n_{2}-1\right)-a\left(n_{1}, n_{2}+1\right)\right]}_{=\left(\Delta_{1}+\Delta_{2}\right) a\left(n_{1}, n_{2}\right)}
\end{aligned}
$$

for

$$
n_{2}=n_{1}+1: \quad 2\left[E-E_{0}\right] a\left(n_{1}, n_{2}\right)=J\left[2 a\left(n_{1}, n_{2}\right)-a\left(n_{1}-1, n_{2}\right)-a\left(n_{1}, n_{2}+1\right)\right]
$$

S-matrix and generalization to N particles (back to tubbard model)

We had

$$
a_{s_{1}, s_{2}}\left(n_{1}, n_{2}\right)=\mathcal{A} e^{i k_{1} n_{1}+i k_{2} n_{2}}(\underbrace{A_{s_{1}, s_{2}} \Theta\left(n_{1}-n_{2}\right)}_{\text {wavefunction in subset } \mathrm{A}}+\underbrace{B_{s_{1}, s_{2}} \Theta\left(n_{2}-n_{1}\right)}_{\text {wavefunction in subset } \mathrm{B}})
$$

S-matrix and generalization to N particles (baakt totubacad mode)

We had

$$
a_{s_{1}, s_{2}}\left(n_{1}, n_{2}\right)=\mathcal{A} e^{i k_{1} n_{1}+i k_{2} n_{2}}(\underbrace{A_{s_{1}, s_{2}} \Theta\left(n_{1}-n_{2}\right)}_{\text {wavefunction in subset } \mathrm{A}}+\underbrace{B_{s_{1}, s_{2}} \Theta\left(n_{2}-n_{1}\right)}_{\text {wavefunction in subset } \mathrm{B}})
$$

Need to relate the amplitudes $A_{s_{1}, s_{2}}$ and $B_{s_{1}, s_{2}}$ in both regions:

$$
B_{s_{1}, s_{2}}=S_{s_{1}, s_{2}}^{s_{1}^{\prime}, s_{2}^{\prime}} A_{s_{1}^{\prime}, s_{2}^{\prime}}
$$

S-matrix and generalization to N particles (back to tubbard model)

We had

$$
a_{s_{1}, s_{2}}\left(n_{1}, n_{2}\right)=\mathcal{A} e^{i k_{1} n_{1}+i k_{2} n_{2}}(\underbrace{A_{s_{1}, s_{2}} \Theta\left(n_{1}-n_{2}\right)}_{\text {wavefunction in subset } \mathrm{A}}+\underbrace{B_{s_{1}, s_{2}} \Theta\left(n_{2}-n_{1}\right)}_{\text {wavefunction in subset } \mathrm{B}})
$$

Need to relate the amplitudes $A_{s_{1}, s_{2}}$ and $B_{s_{1}, s_{2}}$ in both regions:

$$
B_{s_{1}, s_{2}}=S_{s_{1}, s_{2}}^{s_{1}^{\prime}, s_{2}^{\prime}} A_{s_{1}^{\prime}, s_{2}^{\prime}}
$$

Two-particle S-matrix

- Describes scattering processes in the basis of free particles!
- To be obtained by use of symmetries and the Schroedinger equation at $n_{1}=n_{2}$.

S-matrix and generalization to N particles (back to tubbard model)

We had

$$
a_{s_{1}, s_{2}}\left(n_{1}, n_{2}\right)=\mathcal{A} e^{i k_{1} n_{1}+i k_{2} n_{2}}(\underbrace{A_{s_{1}, s_{2}} \Theta\left(n_{1}-n_{2}\right)}_{\text {wavefunction in subset } \mathrm{A}}+\underbrace{B_{s_{1}, s_{2}} \Theta\left(n_{2}-n_{1}\right)}_{\text {wavefunction in subset } \mathrm{B}})
$$

Need to relate the amplitudes $A_{s_{1}, s_{2}}$ and $B_{s_{1}, s_{2}}$ in both regions:

$$
B_{s_{1}, s_{2}}=S_{s_{1}, s_{2}}^{s_{1}^{\prime}, s_{2}^{\prime}} A_{s_{1}^{\prime}, s_{2}^{\prime}}
$$

Two-particle S-matrix

- Describes scattering processes in the basis of free particles!
- To be obtained by use of symmetries and the Schroedinger equation at $n_{1}=n_{2}$.

Summarize this viewpoint

- Hubbard, Heisenberg and Kondo model subject to local interaction.
- In the "free" regions, plain waves constitute solutions.
- Amplitudes of "free" regions related by two-particle S-matrix.

Generalization to N particles, Yang Baxter Equation

Generalization to N particles

- $N+1$ regions are obtained, in all of which solutions are given by plane waves and the interaction of which is described by the two-particle S-matrix

Generalization to N particles, Yang Baxter Equation

Generalization to N particles

- $N+1$ regions are obtained, in all of which solutions are given by plane waves and the interaction of which is described by the two-particle S-matrix
- Expand in plane waves over all permutations \mathcal{P}_{R} of regions \equiv Bethe ansatz:

$$
a_{s_{1}, \ldots s_{N}}=\mathcal{A} e^{\sum_{j} k_{j} n_{j}} \sum_{\mathcal{P}_{R}} A_{s_{1}, \ldots, s_{N}}\left(\mathcal{P}_{R}\right) \Theta\left(n_{\mathcal{P}_{R}}\right)
$$

Generalization to N particles, Yang Baxter Equation

Generalization to N particles

- $N+1$ regions are obtained, in all of which solutions are given by plane waves and the interaction of which is described by the two-particle S-matrix
- Expand in plane waves over all permutations \mathcal{P}_{R} of regions \equiv Bethe ansatz:

$$
a_{s_{1}, \ldots s_{N}}=\mathcal{A} e^{\sum_{j} k_{j} n_{j}} \sum_{\mathcal{P}_{R}} A_{s_{1}, \ldots, s_{N}}\left(\mathcal{P}_{R}\right) \Theta\left(n_{\mathcal{P}_{R}}\right)
$$

$N=3$ particles:
\rightarrow relate the amplitudes of two different regions R_{1} and R_{2}

$$
A\left(\mathcal{P}_{R_{1}}\right)=S^{i j} S^{j k} S^{k l} A\left(\mathcal{P}_{R_{2}}\right)
$$

Usually there are several ways to relate different regions. The consistency of the ansatz requires uniqueness for different paths, i.e.

$$
S^{23} S^{13} S^{12}=S^{12} S^{13} S^{23}
$$

\rightarrow Yang-Baxter equation for three particles

Contents

(1) Introduction

(2) Ferromagnetic 1D Heisenberg model

3 Antiferromagnetic 1D Heisenberg model
(4) Generalizations
(5) Summary and References

Summary of Section 4

Yang-Baxter equation

If the S-matrix derived from the Hamiltonian satisfies the Yang-Baxter equation, the Bethe ansatz for the wave functions is consistent and the model is integrable.

Summary of Section 4

Yang-Baxter equation

If the S-matrix derived from the Hamiltonian satisfies the Yang-Baxter equation, the Bethe ansatz for the wave functions is consistent and the model is integrable.

How may the eigenstates fail to have the Bethe form?

Summary of Section 4

Yang-Baxter equation

If the S-matrix derived from the Hamiltonian satisfies the Yang-Baxter equation, the Bethe ansatz for the wave functions is consistent and the model is integrable.

How may the eigenstates fail to have the Bethe form?

- Implicit assumption was made: set of wave numbers $\left\{k_{i}\right\}$ is the same for all regions, i.e. momenta are conserved in interactions.

Summary of Section 4

Yang-Baxter equation

If the S-matrix derived from the Hamiltonian satisfies the Yang-Baxter equation, the Bethe ansatz for the wave functions is consistent and the model is integrable.

How may the eigenstates fail to have the Bethe form?

- Implicit assumption was made: set of wave numbers $\left\{k_{i}\right\}$ is the same for all regions, i.e. momenta are conserved in interactions.
- Much stronger than energy or momentum conservation - except for a fermionic two-body interaction in 1D (where it is equivalent to momentum conservation).

Summary of Section 4

Yang-Baxter equation

If the S-matrix derived from the Hamiltonian satisfies the Yang-Baxter equation, the Bethe ansatz for the wave functions is consistent and the model is integrable.

How may the eigenstates fail to have the Bethe form?

- Implicit assumption was made: set of wave numbers $\left\{k_{i}\right\}$ is the same for all regions, i.e. momenta are conserved in interactions.
- Much stronger than energy or momentum conservation - except for a fermionic two-body interaction in 1D (where it is equivalent to momentum conservation).
- Feature of integrable models, i.e. of a additional dynamical symmetry expressed by an infinite number of commuting conserved charges.
- Consequences: S-matrix factorizes in two-particle S-matrices,...

Summary of Section 4

Yang-Baxter equation

If the S-matrix derived from the Hamiltonian satisfies the Yang-Baxter equation, the Bethe ansatz for the wave functions is consistent and the model is integrable.

How may the eigenstates fail to have the Bethe form?

- Implicit assumption was made: set of wave numbers $\left\{k_{i}\right\}$ is the same for all regions, i.e. momenta are conserved in interactions.
- Much stronger than energy or momentum conservation - except for a fermionic two-body interaction in 1D (where it is equivalent to momentum conservation).
- Feature of integrable models, i.e. of a additional dynamical symmetry expressed by an infinite number of commuting conserved charges.
- Consequences: S-matrix factorizes in two-particle S-matrices,...
- But, no problem: all this guaranteed by successful check of the Yang-Baxter equation.

Summary of Section 2 and $3+$ References

Ferromagnetic and antiferromagnetic Heisenberg model

- Exact eigenstates and eigenenergies for the ferromagnetic case.
- Lowest excitations are bound states.

Summary of Section 2 and $3+$ References

Ferromagnetic and antiferromagnetic Heisenberg model

- Exact eigenstates and eigenenergies for the ferromagnetic case.
- Lowest excitations are bound states.
- Exact ground-state of the antiferromagnetic case in the thermodynamic limit.
- Magentic field and two spinon excitations.

Summary of Section 2 and $3+$ References

Ferromagnetic and antiferromagnetic Heisenberg model

- Exact eigenstates and eigenenergies for the ferromagnetic case.
- Lowest excitations are bound states.
- Exact ground-state of the antiferromagnetic case in the thermodynamic limit.
- Magentic field and two spinon excitations.

References

- Section 1: Bethe, ZS. f. Phys. (1931)
- Section 2: Karbach and Müller, Computers in Physics (1997), arXiv: cond-mat/9809162
- Section 3: Karbach, Hu, and Müller, Computers in Physics (1998), arXiv: cond-mat/9809163
- Section 4: N. Andrei, "Integrable models in condensed matter physics", ICTP lecture notes (1994), arXiv: cond-mat/9408101

