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Abstract

Strong correlations are known to severely

reduce the mobility of charge carriers near

half-filling and thus have an important in-

fluence on the current carrying properties of

grain boundaries in the high-Tc cuprates. In

order to analyze this influence, we derive an

extension of the Gutzwiller projection ap-

proach capable to treat general strongly in-

homogeneous systems. An application of the

method to grain boundaries yields an expo-

nential reduction of the critical supercurrent

with increasing misalignment angle. Our re-

sults are in quantitative agreement with ex-

perimental data.

We furthermore provide a detailed com-

parison to an analogous weak-coupling eval-

uation, as well as derivations and discus-

sions of the Bogoliubov - de Gennes (BdG)

framework, the renormalized mean-field the-

ory (RMFT) and the super-cell method.
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1. Introduction

The design of high-temperature superconducting cables as well as the characterization of

well-defined interfaces and contacts for superconducting microwave electronics has been op-

timized over the last 20 years so that they are now found in applications ranging from short

range power supply to medical instrumentation. This has been made possible by intensive

experimental and theoretical research which lead to a better understanding of the bulk as

well as the interface properties of high-Tc materials.1 One of the most complex and puzzling

problems in this respect is the strong reduction of the critical current jc as a function of the

grain boundary (GB) angle. This problem is furthermore of particular practical relevance

(Freericks 2010). Among the various potential and realized technical applications of super-

conductors2 the largest application of conventional superconductors in industry has come in

the form of superconducting wires for magnets, such as those used for most magnetic reso-

nance imaging machines. But exactly for this purpose, unconventional (high-temperature)

superconductors fall short due to the exponential reduction of the current at GBs.

For these reasons, artificially fabricated, well defined GBs, have been extensively studied

(Hilgenkamp and Mannhart 2002). Although great progress has been made to reduce the

influence of large angle GBs on the total current (Hammerl et al. 2002) and to locally improve

their current carrying properties (Hammerl et al. 2000) a full theoretical understanding of

the grain boundary problem is hampered by the complexity of the physics involved. In a

recent study by Graser et al. (2010), the experimentally observed decay of jc with increasing

misalignment angle was reproduced in a microscopic model in which charge inhomogeneities

at the grain boundary were identified as the main source for the suppression of jc. But still

the overall magnitude of jc could not be correctly determined and it was speculated that

strong electronic correlations present in the high-Tc materials might be responsible for this

discrepancy.3

The main aim of this thesis is to present an analysis of the supercurrent through GBs that

takes into account the presence of strong Coulomb interactions. In order to capture generic

defects of the lattice for a certain GB angle, a theoretically reconstructed sample of a GB

should include at least several hundred lattice sites. Due to numerical limitations, this can

only be modeled by an effective one-particle description. To incorporate static correlations

nevertheless we employ a Gutzwiller approximation (Zhang et al. 1988) that should already

1Hilgenkamp and Mannhart (2002), Dimos et al. (1988), Gurevich and Pashitskii (1998), Stolbov et al.

(1999), Pennycook et al. (2000), Tanaka and Kashiwaya (1995), Freericks (2006), Yokoyama et al. (2007),
Schwingenschlögl and Schuster (2009).

2For example, low-cost current-carrying wires, passive electronic devices, and high-speed active digital elec-
tronics.

3Andersen et al. (2008) made the assertion based on a non-microscopic calcualtion for the special case of
(110) junctions. In contrast to that, in this thesis a microscopic calculation is employed.
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capture an important part of the GB physics.

The Gutzwiller approach had a lot of success for the description of homogeneous mod-

els of cuprate high-Tc superconductors (Anderson et al. 2004). In the last years it could

be rigorously extended to inhomogeneous systems (Wang et al. 2006, Ko et al. 2007) and

is now an established method to e.g. capture important aspects of the interplay between

impurities and superconductivity (Garg et al. 2008). In this thesis, we employ an extended

implementation ot the Gutzwiller projection approach that is able to account for the very

strong inhomogeneities present in GBs, which is otherwise not possible. Using this method

we obtain excellent agreement with experimental data.

The thesis is structured into three parts. In Sec. 2, the extended Gutzwiller approximation

scheme is derived in detail. Sec. 3 is dedicated to the employed methods, the Bogoliubov

- de Gennes (BdG) framework and the renormalized mean field theory (RMFT). In Sec. 4,

these tools are employed to discuss the supercurrent through GBs in the presence of strong

correlations.



2. Gutzwiller approximation for strongly

inhomogeneous systems

The Hubbard model,1 given by the hamiltonian

HHubbard = −
∑

〈ij〉s

tij(c
†
iscjs + h.c.) + U

∑

i

(n̂i↑ − 1
2 )(n̂i↓ − 1

2 ) (2.1)

allows to address several aspects of unconventional superconductivity. In the half filled

case and with an interaction U stronger than a certain critical value, the system is in a

Mott insulating state.2 For very large U this state can be thought to be a Heisenberg

antiferromagnet, the effective spin coupling constant of which originates from virtual hopping

processes and has a value of J = t2/U . Anderson (1987) proposed that upon doping, the

antiferromagnetic Néel lattice is melted and a spin liquid groundstate emerges. This spin

liquid state is called the resonating valence bond (RVB) state,3 in which the neutral magnetic

singlet pairs of the insulator have become charged superconducting pairs.

For the functional form of the RVB state different propositions were made, the most

successfull one turned out to be the one proposed by Anderson (1987)

|ψ〉 ≡ |RVB〉 ≡ P|ψ〉0 where |ψ0〉 ≡ |BCS〉 ≡
∏

k

(uk + vkc
†
k↑c

†
k↓)|vac〉 (2.2)

P ≡
∏

i

(1− n̂i↑n̂i↓) (2.3)

and |vac〉 is the state devoid of all particles. It is meant to be viewed as a natural extension

of the usual BCS state for strongly correlated systems. Indeed this state is capable to

describe several physical properties of cuprate superconductors. For reviews about this see

e.g. Anderson et al. (2004) or Edegger et al. (2007).

The problem with the state in Eq. (2.2) is that the form of the projection operator makes

it very hard to calculate analytical results. Following the original idea of Gutzwiller (1965),4

Zhang et al. (1988) introduced a version of the Gutzwiller approximation that evaluates

expectation values within the RVB state by taking into account the projection operator in

an approximate way via classical statistical weights. For this they used techniques developed

1The Hubbard model was introduced simultaneously by Hubbard (1963), Kanamori (1963) and Gutzwiller
(1963).

2Confer Mott (1949) and Brinkman and Rice (1970).
3Earlier ideas concerning a realization of the RVB state were formulated already by Anderson (1973) and
Fazekas and Anderson (1974).

4The original formulation of the Gutzwiller approximation (Gutzwiller 1965) was introduced in order to
approximate an exact evaluation of the Gutzwiller wave function (Gutzwiller 1963; 1964).
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and clarified by Ogawa et al. (1975) and Vollhardt (1984). Zhang et al. (1988) showed by

comparison with variational Monte Carlo calculations that their evaluation yields results

that are in good qualitative agreement with a numerically exact calculation. Although the

Gutzwiller approximation neglects all quantum correlations5 and only retains combinatorial

ones.

2.1. Basic theoretical concept

The argumentation used by Zhang et al. (1988) to introduce their Gutzwiller approximation

is so short and instructive that it is presented here. The reader will get an intuition for the

physical and technical implications which will make it easier to later follow the derivation of

an extended version of the Gutzwiller approximation.

The key idea to evaluate expectation values in the RVB state is to assume complete

statistical independence of the populations on different sites. This assumption is of course

a very crude one and means basically to treat certain important aspects of the quantum

electronic system like a classical, ideal gas. This can only lead to physical results in special

situations and for special observables. We keep this in mind and stress that the Gutzwiller

approximation is far from being a correct microscopic description of the system, but may

rather be viewed as a phenomenological description that can lead to physical insights.

This thesis will focus on the t-J-model which is well established to describe superconduc-

tion in Cu oxides (Zhang and Rice 1988). It can be directly derived from an analyzation of

the physical processes in the Cu oxides6 or from a strong coupling expansion of the Hubbard

model. Its hamiltonian is given by7

H = −t
∑

(ij)s

(c†iscjs + h.c.) + J
∑

〈ij〉

Si · Sj (2.4)

We are interested in the two expectation values that characterize the two microscopic pro-

cesses captured in Eq. (2.4). This is the hopping and the spin-interaction process. Their

expectation value corresponds to their probability of occurrence in the system state.

The Gutzwiller approximated probability for a hopping process in a state that allows

double occupation |ψ0〉 is calculated as follows. One neglects spatial correlations but still

considers non-distinguishable electrons that obey the Pauli principle. Furthermore the prob-

ability for a process is calculated as the product of the probability amplitudes of its start

and end configuration. The four possible start configurations8 for an ↑-spin hopping process

5Dynamical correlations are already excluded due to the variational wave function ansatz. Spatial cor-
relations are neglected when employing the Gutzwiller approximation. This will become clearer later
on.

6For this issue and further information, see the review by Ogata and Fukuyama (2008).
7The no-double occupancy condition for the hopping term that is usually present in the t-J-hamiltonian is
not taken into account in Eq. (2.4) as the Gutzwiller projector in the wave function makes it redundant.
In other words, the no-double occupancy condition of the full t-J-hamiltonian is already implemented
in the variational wave function. As we focus solely either on Gutzwiller evaluations or on completely
uncorrelated Hartree-Fock evaluations that simply neglect the no-double occupancy condition, we employ
the hamiltonian as given in Eq. (2.4).

8 We classify configurations with respect to the kind of occupation of a site: empty (holon), occupied with
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from site i to site j must have a site i occupied with an ↑-spin electron and a site j not

occupied by an ↑-spin electron, due to the Pauli principle. The end configuration is then just

inverted with respect to the site indices i, j, such that the probability for the process reads

〈c†i↑cj↑〉0 ∼
(
ni↑(1− nj↑)

)1/2
︸ ︷︷ ︸√
P (end configuration)

(
(1− ni↑)nj↑

)1/2
︸ ︷︷ ︸√
P (start configuration)

(2.8)

Consider now a system that does not allow for double occupancies but has the same density

(one simply adjusts µ accordingly). Such a system corresponds to the wave function |ψ〉,
in which doublons are projected out. In such a system only three types of occupations are

possible: occupation by a hole, an ↑-spin or ↓-spin electron. This changes the probabilities for

the different populations Eq. (2.6) and thus the probability for the start and end configuration

of a ↑-spin hopping process. The probability for the whole process in |ψ〉 then reads

〈c†i↑cj↑〉 ∼
(
ni↑(1− nj)(1− ni)nj↑

)1/2
(2.9)

where ni ≡ ni↑ + ni↓.

The derivation of these probabilities makes sense only for a homogeneous system where

ni ≡ n. Only then the approximation of the system as a non-correlated gas is reasonable.

One is only interested in the paramagnetic case such that ni↑ = ni↓ = n
2 holds true. With

this we can give the ratio for the probabilities of a hopping process in a strongly correlated

system being one in which doublons are projected out, compared to a non-correlated system

in which doublons are present

〈c†i↑cj↑〉
〈c†i↑cj↑〉0

∼
(
ni↑(1− nj)(1 − ni)nj↑

)1/2
(
ni↑(1− nj↑)(1 − ni↑)nj↑

)1/2 =
2(1 − n)

2− n
(2.10)

a ↑-spin electron, occupied with a ↓-spin electron, doubly occupied (doublon).
To make the following arguments more clear we give the probabilities for the just mentioned different

populations of a site i when spatial correlations are neglected, i.e. populations are treated as in a classical,
ideal gas on a lattice. We furthermore consider results in the thermodynamic limit (L,N → ∞ where
L is the number of lattice sites and N the number of particles). For a Hilbert space that allows double
occupancies the probabilities are

Pi(↑) = ni↑(1− ni↓) (2.5a)

Pi(↓) = ni↓(1− ni↑) (2.5b)

Pi(0) = (1− ni↑)(1− ni↓) (2.5c)

Pi(↑↓) = ni↑ni↓ (2.5d)

and for a Hilbert space that only allows empty and singly occupied sites

Pi(↑) = ni↑ Pi(↓) = ni↓ Pi(0) = 1− ni↑ − ni↓ (2.6)

The site index i is merely given to distinguish start and end configuration of the processes discussed in
the text above. We consider a homogeneous system where all sites are equivalent.

As it will be needed later, below the probabilities for a Hilbert space that does not allow for holes are
given. For simplicity, here are only the results for the spin-symmetric case ni↑ = ni↓ = ni

2

Pi(↑) = (1−
ni

2
) = Pi(↓) Pi(↑↓) = ni − 1 (2.7)
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This ratio defines the Gutzwiller factor gt

〈c†iscjs〉
Gutzw.≃ gt(n)〈c†iscjs〉0 , gt(n) ≡ 2(1− n)

2− n
(2.11)

This is an approximate expression for the probability of a hopping process in the compli-

cated state |ψ〉 in dependence of the probability of a hopping process in the simple product

state |ψ0〉 = |BCS〉 describing non-interacting pairs of electrons. We note that for both,

neither the free |ψ0〉 = |BCS〉 nor the exactly evaluated projected state |ψ〉 the assumption

of statistical independence of site populations holds true9 such that the approximation of

equation Eq. (2.11) certainly contains spatial correlations also on the right hand side. This

makes the approximation a non-trivial one. It is therefore wrong to think that the Gutzwiller

approximation amounts to fully neglecting spatial correlations10 — it is only in the deriva-

tion of the statistical weighting factors that they are neglected. Realizing this we would

now rather say that the Gutzwiller approximation in the form just introduced makes the

assumption that the description of expectation values in |ψ〉 is possible with a product state

of non-interacting particles for |ψ〉, if the latter is appropriately renormalized. This can be

a good approximation if the expectation value under consideration does not depend on the

details of the complicated form of |ψ〉 but rather on general energetic considerations.

For the spin exchange process between an ↑-spin electron on site i and a ↓-spin electron

on site j, start and end configuration have to consist of two singly occupied sites. All other

configurations imply a contradiction with the Pauli Principle. The probability for the spin

interaction process11 in the states |ψ0〉 and |ψ〉 can then be given in analogy to the above

derivation

〈Si · Sj〉0 ∼
(
ni↑(1− ni↓)nj↓(1 − nj↑)ni↓(1− ni↑)nj↑(1− nj↓)

)1/2
(2.12)

〈Si · Sj〉 ∼
(
ni↑nj↓ni↓nj↑

)1/2
(2.13)

The ratio of these probabilities defines the Gutzwiller factor for the spin interaction process

〈Si · Sj〉
Gutzw.≃ gJ(n)〈Si · Sj〉0 , gJ (n) ≡

4

(2− n)2
(2.14)

Finally the limiting cases n → 1 and n → 0 are briefly discussed. Clearly gt(n = 1) = 0,

i.e. the probability for a hopping process in a system at half filling in which doublons are

projected out. This situation is an immediate consequence of the Pauli exclusion principle

9Otherwise, of course, the result would be Eq. (2.9), the hopping probability in the approximation of complete
statistical independence of site populations.

10This would be the case for a so-called Gutzwiller type wave function that is constructed such that 〈AiBj〉 =
〈Ai〉〈Bj〉 holds true exactly for any local operators Ai and Bi. Above the neglected spatial correlation is
recuperated on the r.h.s. of Eq. (2.11) by using a wave function |ψ0〉 that allows spatial correlations such
that here way employ a better approximation. Nevertheless, even approximations with Gutzwiller-type
wave functions are very successfully employed (e.g. for the description of cold gases Jaksch et al. (1998)
and Jaksch et al. (2002)).

11Note here that also other processes than the spin exchange process are involved in the spin interaction,
e.g. the charge density interaction. Historically this was ignored — the issue will be discussed in detail in
Sec. 2.2.
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for a Coulomb interaction higher than a critical value and the corresponding state is the Mott

insulator already mentioned above. One calculates furthermore gJ (n = 1) = 4 which reflects

the fact that in a half filled system without double occupations spin-exchange processes

can happen between much more sites than in a system of the same density allowing double

occupations. For zero filling we have gt(n = 0) = gJ(n = 0) = 1. This means that for fillings

close to zero filling, the effects of combinatorial correlation can be neglected. This is also in

correspondence with the trivial physical insight, that almost no electrons will almost never

meet and therefore almost never interact. With this we already captured some important

physical aspects of a strongly correlated system though it is not obvious that this is right

beyond the qualitative level.

Particle-hole transformation Consider now what happens in a system that is electron

doped, i.e. n > 1. One can define an operator that creates a hole as

h†is ≡ cis (2.15)

with its hermitian conjugate. If all c†is operators in the hamiltonian of the Hubbard model,

now including a term with a chemical potential,

HHubbard(t, U, µ) = −
∑

〈ij〉s

tij(c
†
iscjs + h.c.) + U

∑

i

(ni↑ − 1
2 )(ni↓ − 1

2)− µ
∑

i

ni (2.16)

are expressed in terms of the h†is operators one sees that the expression remains invariant up to

a minus sign for the kinetic energy and the chemical potential term.12 Without any problem

one can absorb an overall minus sign to produce a hamiltonian HHubbard(t,−U, µ) being

equivalent to HHubbard(−t, U,−µ). This procedure is called a particle-hole transformation.

Without being concerned with mathematical issues here, the question arises what a system

above half filling behaves like and if the idea of a particle-hole transformation can be useful

for its inspection. Take the interaction term: When n > 1 in a snapshot of the system state

there are at least n−1 double occupations. Starting from this situation, one realizes that any

creation of an empty site costs the energy of a further double occupation, as these processes

can only happen simultaneously. In this situation empty sites have taken the role of double

occupations. This is just the physics described by the transformation from HHubbard(t, U) to

HHubbard(t,−U) if we take the transformed hamiltonian as consisting of particle operators

c† again.

In a pragmatic sense, we use the projection operator in the Gutzwiller wave function to

reintroduce the neglected no-double occupancy condition in the t-J-model hamiltonian. This

no-double occupancy condition is a result of the strong-coupling theory that leads from the

Hubbard model to the t-J-model by considering processes that take place only in the lower

Hubbard band, i.e. the set of local states with doublons excluded. As already mentioned,

12For the interaction term we have (nis − 1
2
) = (c†iscis −

1
2
) = ( 1

2
− cisc

†
is) = −(h†

ishis −
1
2
). Such that the

product of the two spin terms cancels the minus sign. For the kinetic energy and the chemical potential
term we perform one simple commutation that yields the minus sign.
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this is no longer the right way to describe the system if the chemical potential is so large

that the system is above half filling. Then one is forced to consider only the upper Hubbard

band. In order to choose a physical t-J-model, one then has to choose a projection operator

that projects out holes in the wave function, i.e. take the setting of Eq. (2.2) but define the

projection operator as

Ph ≡
∏

i

(1− Ei) where Ei = (1− n̂i↑)(1− n̂i↓) (2.17)

Then the Gutzwiller factors can be calculated using Eq. (2.7)

〈c†iscjs〉 ∼ gt(n)〈c†iscjs〉0 , gt(n) ≡
2(n− 1)

n
(2.18)

〈Si · Sj〉 ∼ gJ(n)〈Si · Sj〉0 , gJ(n) ≡
4

n2
(2.19)

This result can be directly obtained by performing a local particle hole transformation in the

expressions Eqs. (2.11) and (2.14) by replacing the spin-dependent densities nis → 1 − nis

or for a homogeneous paramagnet n→ 2− n.

2.2. Standard application for inhomogeneous systems

One may wonder why the preceding derivation of the Gutzwiller factors is not valid for

inhomogeneous systems. This is due to the fact that upon projecting with the operator P
defined in Eq. (2.2) the local densities ni will not coincide in the two states |ψ〉 and |ψ0〉.
Another reason is the justification of the calculations for the occupancies in footnote 8 which

rely completely on the picture of a classical, ideal gas. It is hard to believe that this should be

valid in an inhomogeneous system. Nevertheless it will turn out that a quantum mechanical

evaluation of expectation values will yield the same result as a naive application of the results

of the preceding section to inhomogeneous systems.

Only recently, a mathematically clear derivation of the Gutzwiller factors for inhomoge-

neous systems was presented by Wang et al. (2006). They again referred to the t-J-model

which includes now an additional term with local impurity potentials ǫi

H = −t
∑

(ij)s

(c†iscjs + h.c.) + J
∑

〈ij〉

Si · Sj +
∑

is

(ǫi − µ)c†iscis (2.20)

Here their derivation is briefly sketched to provide an appropiate introduction to Sec. 2.3.

There an extension of their work will be derived in order to describe strongly inhomogeneous

systems, e.g. grain boundaries (Sec. 4). For the clarification of certain additional aspects in

this section Ko et al. (2007) will be consulted.13

13Further remarks:
(i) A clear improvement of the method that is presented here is given by Fukushima (2008). As in
this thesis the aim is not to work with the best Gutzwiller approximation possible, but rather to use a
phenomenological tool that allows to describe the problem of interest (Sec. 4), these details are not given.
(ii) Successfull applications of the inhomogeneous theory presented here come from Garg et al. (2008) and
Li et al. (2006).
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The derivation of the Gutzwiller factors by Wang et al. (2006) is based on the definition

of a generalized projection operator

P ≡
∏

i

Pi where Pi ≡ yn̂i
i (1−Di) where Di ≡ n̂i↑n̂i↓ (2.21)

that includes the fugacities yi in order to fulfill the constraint that the density on each site

remains unchanged upon projection.

〈n̂i〉 !
= 〈n̂i〉0 (2.22)

It is this constraint that leads to the explicit form of the Gutzwiller factors we employ as

pointed out by Ko et al. (2007).

As before, the Gutzwiller factors are derived as the ratios of the expectation values of the

process of interest in the projected 〈·〉 and the preprojected state 〈·〉0. But now, it is aimed

to perform this evaluation in a more rigorous manner than just stating that non-correlation

between different sites is assumed. An expectation value in the projected state |ψ〉 = P|ψ0〉
is defined as

〈·〉 = 1

Z
〈ψ0|P · P|ψ0〉 where Z = 〈ψ0|P2|ψ0〉 (2.23)

As |ψ0〉 is a non-interacting state one can in principle use Wick’s theorem to evaluate

such an expectation value exactly. But clearly, for a bigger system the number of c†i and ci

operators already present in
∏

i Pi becomes so immense that evaluation by contraction is a

task that is in practice not feasible. When restating the idea of the Gutzwiller approximation

in this language one formulates: inter-site contractions 〈c†i cj〉0 yield a much smaller contri-

bution then on-site contractions 〈c†i ci〉 when calculating the expectation value.14 Therefore

one can approximate the evaluation by just accounting for on-site contractions.15 This for-

mulation of the Gutzwiller approximation is stated in a different way by Ko et al. (2007)

who consider canonical wave functions. We are interested in describing a system with states

that are BCS type variational wave functions, and therefore grand-canonical wave functions.

This is the case treated by Wang et al. (2006). A detailed discussion, though interesting,16

(iii) Noteworthy is also the article of Ogata and Himeda (2003) who presented an elaborate derivation of
Gutzwiller factors that include also non-local contributions for homogeneous systems (similar to Fukushima
(2008)). Their expressions are also used in a form appropriate for inhomogeneous systems as e.g. in
Tsuchiura et al. (2001), but this form is only “speculated” (Fukushima et al. 2009) from the homogeneous
case, not rigorously derived. (This happened also in several other cases with different authors and different
expressions.) Needless to say that Ogata has made some important contributions, for one of the early
articles see e.g. Tsuchiura et al. (1999).

14This statement is taken from Fukushima (2008), the formulation of which allows him to systematically
improve the approximation by taking more and more non-local terms into account using the method
introduced by Metzner and Vollhardt (1988).

15Take e.g. a product of occupation numbers, which is the operator which will be most frequently needed as
it appears in the expansion of

∏
i P

2. The approximation then reads:

〈
∏

i

n̂i〉
Gutzw.
≃

∏

i

〈n̂i〉 (2.24)

16 (i) The formulation of the condition to neglect inter-site correlations of Ko et al. (2007) is different from
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will not be presented.

The Gutzwiller approximation in our formulation is now used to evaluate all expectation

valuers of interest. In particular the normalization constant:

Z = 〈P2〉 =
〈
∏

i

P2
i

〉
∼
∏

i

〈P2
i 〉 ≡

∏

i

zi (2.28)

and e.g. the spin-interaction process,

〈Si · Sj〉 =
1

Z
〈ψ0|PSi · SjP|ψ0〉 =

1

zizj
〈ψ0|PiPjSi · SjPiPj|ψ0〉 (2.29)

To evaluate this we have to find an expression for PiPjSi ·SjPiPj . This is easy for the spin-

exchange component of the interaction Si ·Sj . As Eq. (C.8) shows, only the x, y-components

of the spin-interaction describe a spin-exchange process while the z-component describes a

spin density interaction. Only the exchange is projective as is immediately clear when noting

that it is strongly restricted by the Pauli principle. It can only happen in the sub-space of

singly-occupied sites and therefore there exists a simple expression for PiPjSi ·SjPiPj that

will be explicitly derived in the following section.

For the z-component of the spin-interaction the property of projectiveness does not hold

true. In particular, in the system where double occupancy is forbidden this interaction

acts in the same way as in the preprojected system. Thus the Gutzwiller factor for the

z-component would therefore be gJiz = 1. This of course breaks rotational invariance which

is not astonishing as configuration counting requires a fixed spin basis (Ko et al. 2007). This

breaking of rotational invariance turned out to lead to unphysical results, which are avoided

if the complete spin-spin interaction is renormalized in the same way. In the paramagnetic

what we do as stated above. They consider the explicit form of a canonical wave function

|ψ0〉 =

N↓∏

k′

α†
k′↓

N↑∏

k

α†
k↑|vac〉 where α†

ks =
∑

i

αkisc
†
is (2.25)

describe one-particle states. They can then derive the Gutzwiller factors by configuration counting on a
lattice in an approach that is similar to the one of Metzner and Vollhardt (1988). In particular they can
perform all Wick contractions analytically to obtain determinants that are then approximated by their
diagonal elements.
(ii) There is another very interesting and successful concept to introduce a Gutzwiller type approximation.
It consists in the introduction of a so-called Gutzwiller-type wave function, which is of grand-canonical
type and has the following form for spin-less fermions

|ψ0〉 =
L∏

i

|i〉 where |i〉 = (βi0 + βi1c
†
i )|vac〉 (2.26)

This wave function does not describe a product of one-particle states but a product of local states or
configurations of each lattice site i. In such a state obviously, the above factorization Eq. (2.24) condition
holds true exactly. Consider for example the projector on occupied sites:

〈

L∏

i

n̂i〉 =

L∏

i

〈n̂i〉 =

L∏

i

〈i|n̂i|i〉 =

L∏

i

ni (2.27)

We will later on refer to this to make certain points of the general interpretation of such a Gutzwiller
approach clear.
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phase it is adequate to identify the spin-interaction process solely by the spin-exchange

process. Then

〈Si · Sj〉 = gJi g
J
j 〈Si · Sj〉0 (2.30)

2.3. Particle-hole symmetric Gutzwiller factors

In this section a derivation of Gutzwiller factors that are symmetric around half filling is

presented. These renormalization coefficients will then be used in the description of grain

boundaries in Sec. 4. They might as well be useful for other examples of strongly inhomo-

geneous systems, though this question is not investigated in this thesis. Also in Sec. 4, a

phenomenological argumentation for the need of particle-hole symmetric Gutzwiller factors

will be given. Here it is only briefly summarized. Imagine a system that has lattice sites on

which particles can gain more potential energy than the interaction energy on single sites,

i.e. ǫi < −U . On such a site the empty state plays the role of the doubly occupied state

in the sense that it is energetically as unfavorable as the latter on a site with ǫi ∼ 0. One

can therefore conclude that a better wave function modeling is obtained if on such a site

the holon instead of the doublon contributions are projected out. This leads to Gutzwiller

factors which perform a renormalization that is symmetric with respect to half filling, i.e.

particle-hole symmetric. The derivation is presented in the following.

For this we further generalize the projection operator of Eq. (2.21). The operator to be

defined below, locally projects out either doublons (double occupations) or holons (empty

sites) depending on the local density. The derivation is in complete analogy to the one

presented by Wang et al. (2006). For clarity and comparison their results are restated while

introducing the new form of Gutzwiller factors.

2.3.1. A generalized projection operator

The following notation is used where the preprojected state |ψ0〉 is assumed to be normalized

〈·〉0 = 〈ψ0| · |ψ0〉 (2.31)

〈·〉 = 1

Z
〈ψ0|P · P|ψ0〉 where Z = 〈ψ0|P2|ψ0〉 (2.32)

〈n̂is〉0 ≡ nis and 〈n̂i〉0 ≡ ni (2.33)

We consider a generalized projection operator P ≡∏i Pi

Pi ≡
{

Pd
i ≡ yn̂i

i (1−Di) if ni ≤ 1

Ph
i ≡ yn̂i

i (1− Ei) if ni > 1
(2.34)
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and introduce at the same time the local projectors

Ei ≡ (1− n̂i↑)(1− n̂i↓) (2.35a)

Qi↑ ≡ n̂i↑(1− n̂i↓) (2.35b)

Qi↓ ≡ (1− n̂i↑)n̂i↓ ⇒ Qi ≡ Qi↑ +Qi↓ (2.35c)

Di ≡ n̂i↑n̂i↓ (2.35d)

The latter have projector properties. The identity is given as Id = Ei +Qi +Di. They are

orthogonal EiQi = 0, . . . and they are equal to their square Ei = E2
i , . . . .

We then can immediately give an alternative expression for Pi

{
Pd
i = Ei + yiQi

Ph
i = yi(Qi + yiDi)

(2.36)

To derive the following expressions, we will frequently use the Gutzwiller assumption of

contracting only on-site contributions in expectation values (refer to the preceding section

and e.g. Eq. (2.24)). We will also use the fact, that the BCS type state |ψ〉0 is a mean-field

state for which expectation values of four-operator terms decouple into expectation values

of two-operator terms.

We introduce a last additional piece of notation to make the book-keeping simpler. As we

work in the Gutzwiller approximation and approximate expectation values only by on-site

contractions, for general operators Ai and Bj that are expressed in terms of c†i and ci it holds

〈AiBj〉 Gutzw.
= 〈Ai〉〈Bj〉 for i 6= j. We can therefore express all expectation values taken in

the global wave function in terms of local expectation values 〈·〉i defined as

〈Ai〉
Gutzw.≃ 〈Ai〉i where 〈.〉i ≡

{
〈.〉di = 1

zdi
〈Pdi · Pdi〉0 if ni ≤ 1

〈.〉hi = 1
zhi

〈Phi · Phi〉0 if ni > 1
(2.37)

Finally we note that we are only interested in a non-magnetic system in which ni↑ = ni↓ =
ni
2 holds true.

2.3.2. Calculation of expectation values

For the normalization constant Z we have

Z = 〈P2〉 =
〈
∏

i

P2
i

〉
Gutzw.≃

∏

i

〈P2
i 〉 ≡

∏

i

zi (2.38)

where

zi =

{
zdi = 〈P2

di〉0 = 〈Ei〉0 + y2i 〈Qi〉0 if ni ≤ 1

zhi = 〈P2
hi〉0 = y2i (〈Qi〉0 + y2i 〈Di〉0) if ni > 1

(2.39)
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We further need the expectation values for the different local projectors:

〈Ei〉0 = (1− ni↑)(1− ni↓) = (1− ni
2 )

2 (2.40a)

〈Qi↑〉0 = ni↑(1− ni↓) =
ni
2 (1−

ni
2 ) (2.40b)

〈Qi↓〉0 = (1− ni↑)ni↓ =
ni
2 (1−

ni
2 ) (2.40c)

〈Di〉0 = ni↑ni↓ =
n2
i
4 (2.40d)

where we used the property of the mean-field state that four-operator terms can be decoupled

and for the second equal sign the assumption of a non-magnetic system.

We also need the expectation values of these local projectors in the projected state.17

To derive them we employ the explicit expressions of Pd
i and Ph

i of Eq. (2.36) and use the

orthogonality of the local projectors. The result is

{
〈Ei〉di = 1

zdi
〈ψ0|Ei|ψ0〉

〈Ei〉hi = 0
(2.41)

{
〈Qi〉di = y2i

zdi
〈ψ0|Qi|ψ0〉

〈Qi〉hi = y2i
zhi

〈ψ0|Qi|ψ0〉
(2.42)

{
〈Di〉di = 0

〈Di〉hi = y4i
zhi

〈ψ0|Di|ψ0〉
(2.43)

As already discussed in the preceding section, the fugacity is determined by enforcing the

same value of the local occupation number in the projected as in the preprojected state

Eq. (2.22). We can again directly express it in terms of the local expectation value

〈n̂i〉i !
= ni (2.44)

This equation is most easily evaluated by employing the identities

n̂i = Qi + 2Di in the case of 〈n̂i〉di (2.45)

n̂i = 2− 2Ei −Qi in the case of 〈n̂i〉hi (2.46)

As 〈Di〉di = 0 and 〈Ei〉hi = 0 these identities lead to simple equivalent expressions for

Eq. (2.44)

〈n̂i〉di =
y2di
zdi

〈Qi〉0 !
= ni (2.47a)

〈n̂i〉hi = 2− y2hi
zhi

〈Qi〉0 !
= ni (2.47b)

17For example 〈Ei〉 =
1
Z
〈ψ0|PEiP|ψ0〉

Gutzw.
= 1

zi
〈ψ0|PiEiPi|ψ0〉 = 〈Ei〉i with the just introduced notation of

Eq. (2.37).
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which can be immediately evaluated to give

y2di
zdi

=
2

2− ni
(2.48a)

y2hi
zhi

=
2

ni
(2.48b)

We can evaluate the terms appearing in

〈Si · Sj〉 =
1

Z
〈ψ0|PSi · SjP|ψ0〉 =

1

zizj
〈ψ0|PiPjSi · SjPiPj|ψ0〉 (2.49)

using the projectiveness property of the spin-interaction term and restoring rotational in-

variance as discussed in the preceding section.18 We obtain

PiPjSi · SjPiPj
rot. Inv.

= y2i y
2
jSi · Sj (2.51)

such that

〈Si · Sj〉 =
y2i
zi

y2j
zj

〈ψ0|Si · Sj |ψ0〉 (2.52)

This allows the identification of the Gutzwiller factors for the spin interaction term in the

same manner as before such that we obtain the final result

gJi ≡
{

y2di
zdi

= 2
2−ni

if ni ≤ 1
y2hi
zhi

= 2
ni

if ni > 1
(2.53)

and can write

〈Si · Sj〉 = gigj〈ψ0|Si · Sj|ψ0〉 (2.54)

To derive the renormalization of the hopping term, we have to work a bit harder. First

we evaluate explicitly the expression for the fugacity starting from Eq. (2.48). As before we

assume ni↑ = ni↓ =
ni
2 :

y2di =
(
1− ni

2

)2 1

1− ni
(2.55a)

y2hi =
2(ni − 1)

ni
(2.55b)

18This discussion is summarized: solely the the x, y-component of the spin-operators are responsible for the
spin-exchange process and therefore projective, but we manually set the same renormalization calculated
for the x, y-components also for the z-component to obtain a rotational invariant result. For the z-
component we have after inspection of Eq. (C.8)

PiPj(SixSjx + SiySjy)PiPj = y2i y
2
j (SixSjx + SiySjy) (2.50)

as the operator SixSjx + SiySjy is orthogonal to the empty site contributions in Pi and Pj .
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The derivation of the following operator identities from Eq. (2.34) is straight-forward

PidcisPid = yi(1− nis̄)cis and h.c. (2.56a)

PihcisPih = y3i nis̄cis and h.c. (2.56b)

The probability for a hopping process can be given as

〈c†iscjs〉 =
1

zizj
〈Pic

†
isPiPjcjsPj〉0 (2.57)

Insertion of Eq. (2.56) into this equation19 and using the already derived expressions for

y and z we can immediately give the result for the Gutzwiller factor

gti ≡





ydi
zdi

(1− ni
2 ) =

√
2(1−ni)
(2−ni)

if ni ≤ 1

y3hi
zdi

ni
2 =

√
2(ni−1)

ni
if ni > 1

(2.58a)

such that

〈c†iscjs〉 = gtig
t
j〈c†iscjs〉0 (2.59)

2.3.3. Conclusion

At this stage we have completed the derivation of the renormalization coefficients — the

Gutzwiller factors — that allow to find an approximation of an expectation value in a

projected state by a corresponding preprojected state.

We already see that this is only a first part of the work that has to be accomplished

when one wants to calculate physical quantities in this formalism. This requires an explicit

construction of the state |ψ0〉 which is usually achieved using the Bogoliubov — de Gennes

formalism introduced and discussed in the following.

We will also see that the “correspondence” between the two states |ψ〉 and |ψ0〉 is not always
obvious. This delicate question as well as several practical, technical difficulties concerning

calculations with the Gutzwiller factors will as well be treated in the next section.

19For the case that ni ≤ 1 and nj > 1 e.g. we have 〈c†iscjs〉 =
ydi
zdi

y3

hj

zhj
(1− nis̄)njs̄〈c

†
iscjs〉0.





3. The BdG and the RMFT formalism

In this chapter first the Bogoliubov - de Gennes (BdG) equations are derived in a way that

aims to clarify its physical interpretation. We follow Datta and Bagwell (2008) in several

aspects. This is closed with a presentation of the self-consistency conditions and all necessary

formulas. Then the so-called renormalized mean-field theory (RMFT) is introduced. It is

based on a BdG evaluation of a renormalized hamiltonian that is constructed with the

ideas of chapter 2. This is basically a recapitulation of the ideas of Zhang et al. (1988) and

Wang et al. (2006). Finally results that concern the practical numerical solution of the BdG

equations are presented.

3.1. Derivation and interpretation of the BdG equation

The task is to evaluate an effective one-particle hamiltonian that can be derived starting

from the microscopic hamiltonian with a mean-field decoupling scheme and a variational

calculation (see section C of the appendix). We assume that we already dispose of such a

one-particle hamiltonian. In our case it will necessarily be of the following form

H =
∑

ijs

Hijc
†
iscjs +

∑

ij

(∆ijc
†
j↑c

†
i↓ + h.c.) (3.1)

with Hij and ∆ij some coefficient functions that depend on expectation values of annihilation

and creation operators. In particular

∆ij ≡
Jij
2

(
〈ci↓cj↑〉+ 〈cj↓ci↑〉

)
(3.2)

is the spin-singlet order parameter for electron-pairing.1 Jij is a spin-coupling constant

discussed later on.

To calculate the spectrum of this hamiltonian, we have to obtain a representation of the

stationary Schroedinger equation. This will turn out to be the BdG equation and is derived

in the following subsection.

3.1.1. Representation in a one-particle basis

A matrix representation in Cn of the hamiltonian Eq. (3.1) can easily be obtained by re-

grouping the terms in the sums of Eq. (3.1)

1For basic information concerning unconventional superconductivity confer e.g. the lecture notes of Sigrist
(2006) or the book by Mineev and Samokhin (1999).
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H =
∑

ijs

Hijc
†
iscjs +

∑

ij

(∆ijc
†
j↑c

†
i↓ + h.c.)

=
∑

ij

(
Hijc

†
i↑cj↑ +∆ijc

†
j↑c

†
i↓ +∆∗

ijci↓cj↑ −Hijcj↓c
†
i↓

)
(3.3)

=
∑

ij

(
Hijc

†
i↑cj↑ +∆ijc

†
i↑c

†
j↓ +∆∗

ijci↓cj↑ −H∗
ijci↓c

†
j↓

)
(3.4)

where from the first to the second line we dropped the constant
∑

iHii that results from

anticommuting c†i↓ci↓ and from the second to the third we used the symmetry ∆ij = ∆ji and

the hermiticity Hij = H∗
ji.

It is now possible to write this sum formally in matrix notation with the definitions cs ≡
(c1s c2s . . . cLs)

T , c†s ≡ (c†1s c
†
2s . . . c†Ls)

T , Ĥ = (Hij)
L−1
ij=0 and ∆̂ = (∆ij)

L−1
ij=0 the expression

Eq. (3.4) is identical with

H =

(
c
†
↑ c↓

) (
Ĥ ∆̂

∆̂∗ −Ĥ∗

)(
c↑

c
†
↓

)
, HC ≡

(
Ĥ ∆̂

∆̂∗ −Ĥ∗

)
(3.5)

To derive a representation of H that is “diagonal” (in which only L instead of L2 operator

terms are involved) when expressed with certain operators we diagonalize the C2L × C2L

matrix HC by solving the eigenvalue problem

(
Ĥ ∆̂

∆̂∗ −Ĥ∗

)(
u

v

)
= En

(
u

v

)
(3.6)

where we used the definitions u ≡ (u1 u2 . . . uL)
T and v ≡ (v1 v2 . . . vL)

T . Eq. (3.6) is

called “BdG equation”.

This eigenvalue problem can be simplified by using the time-reversal invariance of the

hamiltonian2 that implies that for each pair of an eigenvalue and eigenvector {En, (u v)T }
there exists another one {−En, (−v∗ u∗)T }. A formal derivation for this is done by realizing

that the matrix T acts on the hamiltonian in the following way

T ≡
(

0 1

−1 0

)
, T −1 = −T ⇒ THCT −1 = −H∗

C (3.7)

This allows to transform the eigenvalue equation to yield

HC

(
u

v

)
= En

(
u

v

)
⇔ THCT −1T

(
u

v

)
= T En

(
u

v

)

⇔ −H∗
C

(
−v

u

)
= En

(
−v

u

)
⇔ HC

(
−v∗

u∗

)
= −En

(
−v∗

u∗

)
(3.8)

2It is spin-symmetric upon complex conjugation.
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This proves the assertion.

Using time-reversal invariance one can now write down the explicit form of the unitary

matrix that diagonalizes the matrix HC

U ≡
(

û −v̂∗

v̂ û∗

)
⇔ U † ≡

(
û† v̂†

−v̂T ûT

)
(3.9)

where the L×L matrices û and v̂ are defined through their columns, the vectors u and v.3

Finally the diagonal operator form of H is derived by insertion of two identies Id = UU †

left and right of HC in Eq. (3.5)

H =

(
γ
†
↑ γ↓

) (
E

−E

)(
γ↑

γ
†
↓

)
(3.10)

where the definitions E ≡ diag(En)L−1
n=0 and

(
γ↑

γ
†
↓

)
≡ U †

(
c↑

c
†
↓

)
(3.11)

were used. The result of the matrix multiplication in Eq. (3.10) reads

H =
∑

n

En(γ†n↑γn↑ + γ†n↓γn↓) (3.12)

Note that the anticommutation canceled the minus-sign that is still present in Eq. (3.10).

3.1.2. Two possibilities of interpreting the BdG equation

As the hamiltonian in Eq. (3.1) consists only of terms bilinear in the two operators c and c† it

can be evaluated in a one particle Hilbert space. Was this common knowledge already used in

the preceding subsection? This is not evident. In order to understand the physical meaning

of the BdG equation and later of its renormalized counterpart this lack of understanding

should be overcome. This is achieved in the present subsection.

What is a one-particle Hilbert space that can be used (and that was implicitly used in the

preceding section) to evaluate the hamiltonian of Eq. (3.1)? The practical requirement for its

definition is that its basis vectors have to be able to provide a bijection from the operator H

to a matrix representation. We see that this is not possible with a naive one-particle Hilbert

space4 consisting solely of states that correspond to a physical particle as then expectation

3As the group of unitary 2N × 2N matrices U(2N) has dimension (2N)2, one can always parametrize a
matrix U belonging to this group with (2N)2 = 2N2 + 2N2 parameters û, v̂ (each of them is a complex
N ×N matrix and therefore allows 2N2 free parameters). It is also possible if the matrix to diagonalize
is not time-reversal invariant. But in this latter case there is no longer a simple correspondence between
↑- and ↓-spin eigenstates as given by the bijection “multiply with T and perform a complex conjugation”.
Then also the right column of U cannot be obtained from the left column with a simple mapping.

4The simplest one-particle Hilbert space that can describe two types of quantum particles on a lattice
would consist of vectors |ψ〉 =

∑
i(αi|i ↑〉 + βi|i ↓〉) spanned by the basis vectors |i ↑〉 ≡ c†i↑|vac〉 and

|i ↓〉 ≡ c†i↓|vac〉 where |vac〉 is the vacuum state defined as being devoid of particles. Normalization of |ψ〉

guarantees that the particle number in the state is one: 〈ψ|ψ〉 =
∑

i(|αi|
2 + |βi|

2) = 1 = 〈
∑

i(ni↑ + ni↓)〉.
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values as 〈c†i↓c
†
j↑〉 cannot be assigned a finite value. This leads to considering a basis that

consists of particle and hole states. It will become clear that it is sufficient to consider only

↑-spin electron and ↓-spin hole states, such that the space has the same dimension dim = 2L

as the naive guess that consists solely of electron states. The basis vectors for this space are

given by

|ei↑〉 ≡ c†i↑|0〉 , |hi↓〉 ≡ ci↓|0〉 (3.13)

The state |0〉 does not describe the vacuum |vac〉 devoid of particles (in which case the

definition would be redundant as ci↓|vac〉 = 0) but a state filled with down-spin electrons:

|0〉 ≡
∏

i<L

c†i↓|vac〉 (3.14)

where i runs over all lattice sites. A vector in this Hilbert space has the form

|ψ〉 ≡ |ψ(ũ, ṽ)〉 ≡
∑

i

(ũi|ei↑〉+ ṽi|hi↓〉) (3.15)

It is a normalized superposition of the basis vectors {|ei↑〉, |hi↓〉}, 〈ψ|ψ〉 =
∑

i |ũi|2+|ṽi|2 = 1.

We can imagine the state |ψ〉 in Eq. (3.15) as a configuration of up-spin particles and down-

spin holes (vacancies) on a lattice.

With these states it is now possible to give a representation of H5

He,h ≡
(
|e↑〉 |h↓〉

) (
Ĥ ∆̂

∆̂∗ −Ĥ∗

)(
〈e↑|
〈h↓|

)
(3.17)

where |e↑〉 ≡ (|e1↑〉 |e2↑〉 . . . |eL↑〉)T and analogously for |h↓〉, 〈e↑| and 〈h↓|. This is nothing
more than returning from the second quantization to the first quantization language. But still

it helps to clarify the viewpoint that is taken when calculating with the expression Eq. (3.5)

and the BdG equation. This viewpoint is not obvious as the physical states of Eq. (3.13) are

not the usual electron tight-binding states assigned to each lattice site and identified with

the electron creation operators of the second quantization language. It can be traced back

to the fact that H is an effective hamiltonian that assumes the underlying ground state of

the many-body hamiltonian in order to be a meaningful definition. To conclude, here the

5This is done by a calculation of the matrix elements in the basis {|ei↑〉, |hi↓〉}.

〈ei↑|H |ej↑〉 =
∑

kl

Hkl〈0|ci↑c
†
k↑cl↑c

†
j↑|0〉 = Hij (3.16a)

〈hi↓|H |hj↓〉 =
∑

kl

(−Hkl)〈0|c
†
i↓cl↓c

†
k↓cj↓|0〉 = −Hji (3.16b)

〈ei↑|H |hj↓〉 =
∑

kl

∆kl〈0|ci↑c
†
l↑c

†
k↓cj↓|0〉 = ∆ji (3.16c)

〈hi↓|H |ej↑〉 =
∑

kl

∆∗
kl〈0|c

†
i↓ck↓cl↑c

†
j↑|0〉 = ∆∗

ij (3.16d)

The representation is then derived by insertion of identities Id =
∑

j(|ej↑〉〈ej↑|+ |hj↓〉〈hj↓|) left and right
of the operator terms in Eq. (3.4) and employing the just calculated matrix elements.
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notation in terms of the physical states Eq. (3.13) with the reference state |0〉 is more clear

than the second quantized picture as the latter obscurely suggests that H can be interpreted

as an ordinary hamiltonian that already gives a complete description of the system.

When transforming to the diagonal form as in Eq. (3.10) we obtain the represenation

Hγ↑,γ↓ ≡
(
|γ↑〉 |γ↓〉

) (
E

−E

)(
〈γ↑|
〈γ↓|

)
(3.18)

which uses states of the form |γi↑〉 ≡
∑

i ui|ei↑〉+ vi|hi↓〉 = ψ(u,v) and is equivalent to the

operator based notation Eq. (3.21). The spin index s here serves now as a mere distinction

between the two blocks in the matrix Eq. (3.18) which do no longer correspond to physical

spins but rather to a new band index.

In the following the consequences for the interpretation of the BdG equation, Eq. (3.6),

are discussed. Now it is obvious that the BdG equation is a representation of the stationary

Schroedinger equation for the hamiltonian Eq. (3.1) in its generic basis {|ei↑〉, |hi↓〉}. Take the
hamiltonian in its form Eq. (3.17) and act on an arbitrary one-particle state also represented

in this basis

〈ei↑|H|ψ(u,v)〉 = En〈ei↑|H|ψ(u,v)〉 ⇔ Eq. (3.6) (3.19)

for the rows in the physical spin-up blocks. The same is obtained by multiplication with

〈hi↓| from the left for the spin-down blocks. By solving the BdG equation we solve the

eigenvalue problem for the operator H in the “amplitude space” C2L that leads to single-

particle eigenstates |γi↑〉 ≡ γ†i↑|0〉 ≡ ψ(u,v) and |γi↓〉 ≡ γi↓|0〉 ≡ ψ(−v∗,u∗) that have

opposite energy eigenvalues {En,−En}.6

When employing the operator based notation one sees that the states created by γ†i↑ and

γ†i↓ do not have opposite energy but are rather energetically degenerate {En, En} as seen in

Eq. (3.12). Reminding the derivation of the effective one-particle hamiltonian it is also clear

that γ†i↑ and γ†i↓ describe one-particle excitations that make only sense when acting on the

ground-state of the full many-body hamiltonian. This ground-state is much too complicated

to be even numerically calculated but has been very successfully approximated by the BCS

variational wave function and generalizations of it.

If we do not assume the excitation viewpoint associated with the operator based notation

we can as well derive a physical picture of the system in terms of solely one-particle states —

following Datta and Bagwell (2008) we call it “one-particle picture”. This second possibility

hinges on the fact that also in the case of the excitation picture we do not use the full

ground-state but a variational wave function being equivalent to a description in terms of a

mean-field hamiltonian. But only the excitation picture can be connected to the many-body

hamiltonian by means of perturbation theory and is therefore justified on a fundamental

level. This cannot a priori be claimed for the one-particle picture. Clearly, showing the

equivalence of both pictures overcomes this lack of justification. If this is the case, we can

6Note that the state labeled by ↓ still is a “hole-state” in the sense that it is associated with an annihilation
operator although it is a superposition of physical electrons and holes. Analogously for the ↑-state.
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in good conscience interpret e.g. the negative energy states of the BdG equation as physical

states, this being solely possible in the one-particle picture.

The equivalence can formally be expressed by the mathematical identity that the gener-

alized BCS variational ground-state |gBCS〉, known to be the basis for the definition of the

excitation picture, can be constructed as (Datta and Bagwell 2008)

|gBCS〉 =
∏

n<L

γ†n↓|0〉 (3.20)

that is, as a product of all one-particle eigen states of the BdG equation that have a negative

eigen value. Here |0〉 is the product of ↓-electrons, as defined in Eq. (3.14). In Eq. (3.20)

we consider En not only as an eigenvalue of HC that artificially assumes negative values, but

use it as a classification to denote |γi↑〉 ≡ γ†i↑|0〉 as positive energy eigenstates of HC and

|γi↓〉 ≡ γi↓|0〉 as negative energy eigenstates. When analyzed from this, the one-particle point

of view, |gBCS〉 does not correspond to a variational wave function that approximates the

ground state of the full hamiltonian, but rather to a “full” band of quasi-particles described

by the operator γ†n↓, i.e. a direct product of the one particle state |gBCS〉 = |γ1↓〉⊗· · ·⊗|γL↓〉.
This band is always filled at T = 07 and orthogonal to the second band described by quasi-

particles γ†n↑. The system is excited by annihilation of a particle in the lower band and

simultaneous creation of a particle in the upper one with γ†i↑γi↓. It can thus be understood

in which sense the “spin” index is considered a quantum number that distinguishes two

effective bands.

To finally discuss two physical observations in the one-particle picture we note that, for

example, here it is immediately clear that the lowest lying excitation has energy 2E0 as

the two effective bands have opposite energy eigenvalues. Considering as a second example

the phenomenon of current transport one states that it can be classified as two effects: the

supercurrent that is due to transport in the lower effective band8 and corresponds in the

excitation picture to the pair tunneling of the fraction of condensed electrons in the ground-

state. And the normal current that is due to processes in the upper effective band which

corresponds to ordinary electron tunneling which is only possible at T > 0.

3.2. Self consistency relations and summary of formulas

The eigenstates of Eq. (3.1) can be interpreted as quasi-particle excitations that have been

derived in the previous section and already partly been given in vector form in Eq. (3.11).

7The construction of the BdG incorporating the chemical potential µ implies that the filling of the “band”
described by ↓ is independent of the physical particle density in the system.

8If it were a physical band, due to its full filling, it would be a band insulator at T = 0. This is not the case
for the effective band.
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The scalar expressions which are much easier to handle are the following

γn↑ =
∑

i<L

(uinci↑ + v∗inc
†
i↓) γ†n↑ =

∑

i<L

(u∗inc
†
i↑ + vinci↓) (3.21)

γn↓ =
∑

i<L

(−v∗inc†i↑ + uinci↓) γ†n↓ =
∑

i<L

(−vinci↑ + u∗inc
†
i↓) (3.22)

The inverse transformation is

ci↑ =
∑

n<L

(uinγn↑ − v∗inγ
†
n↓) c†i↑ =

∑

n<L

(u∗inγ
†
n↑ − vinγn↓) (3.23)

ci↓ =
∑

n<L

(v∗inγ
†
n↑ + uinγn↓) c†i↓ =

∑

n<L

(vinγn↑ + u∗inγ
†
n↓) (3.24)

The effective hamiltonian of Eq. (3.1) when expressed with the quasi-particle operators

above is diagonal as in Eq. (3.12). It is therefore of the form of a gas of free fermionic

particles that obey Fermi-Dirac statistics.9 In the ground state of the gas of free particles,

an antisymmetric product state, it therefore holds

〈γ†nsγms′〉 = δnmδss′f(En) (3.25)

〈γnsγ†ms′〉 = δnmδss′(1− f(E)) = δnmδss′f(−E) (3.26)

The second expression follows by using the fermionic anticommutation relation of the quasi-

particles {γ, γ†} = 1 and the property of the fermi function:

f(E) ≡ 1

eβE + 1
⇒ 1− f(E) = f(−E) (3.27)

With this one can evaluate all expectation values of interest. If the derived expressions

appear explicitly as (mean-)fields in the hamiltonian HC they are also called self-consistency

relations, as the solution of the eigenvalue problem requires a simultaneous, consistent eval-

uation of the expressions for the expectation values.

The local spin-dependent occupation numbers are

ni↑ ≡ 〈c†i↑ci↑〉 =
∑

nm<L

〈(u∗inγ†n↑ − vinγn↓)(uimγm↑ − v∗imγ
†
m↓)〉

=
∑

n<L

|uin|2f(En) + |vin|2f(−En) (3.28)

ni↓ ≡ 〈c†i↓ci↓〉 =
∑

nm<L

〈(vinγn↑ + u∗inγ
†
n↓)(v

∗
imγ

†
m↑ + uimγm↓)〉

=
∑

n<L

|uin|2f(En) + |vin|2f(−En) = ni↑ (3.29)

We find ni↑ = ni↓ = ni
2 as the hamiltonian is parametrized in a way that made exactly this

assumption.

9This is consistent with the full one-particle picture described in the preceding section.
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For the pairing order parameter in Eq. (3.2) we need the expectation value

〈cj↓ci↑〉 =
∑

nm<L

〈((v∗jnγ†n↑ + ujnγn↓)(uinγn↑ − v∗inγ
†
n↓)〉

=
∑

n<L

v∗jnuinf(En)− v∗inujn(1− f(En))

=
∑

n<L

v∗jnuin(f(En)− 1
2)− v∗inujn(

1
2 − f(En))) (3.30)

= −1
2

∑

n<L

(v∗jnuin + v∗inujn) tanh(
β
2En) (3.31)

= 〈ci↓cj↑〉

where from the second to the third line, 1
2 〈{ci↓, cj↑}〉 ≡ 0 was subtracted, from the third to

the fourth line tanh(β2En) = 1 − 2f(En)10 was employed and in the last step the apparent

symmetry in i, j was used.

Due to the symmetry 〈cj↓ci↑〉 = 〈ci↓cj↑〉 the pairing order parameter of Eq. (3.2) can be

written as

∆ij ≡ Jij〈cj↓ci↑〉 (3.32)

= −Jij
2

∑

n<L

(v∗jnuin + v∗inujn) tanh(
β
2En) (3.33)

This is called the self-consistency relation for the pairing field ∆ij. For a homogeneous

system it is equivalent to an extended form of the so-called gap equation of BCS theory.

For the expectation value of the hopping process, one finds

χ̃ij↑ ≡ 〈c†i↑cj↑〉 =
∑

nm<L

〈(u∗inγ†n↑ − vinγn↓)(ujmγm↑ − v∗jmγ
†
m↓)〉

=
∑

n<L

u∗inujnf(En) + vinv
∗
jnf(−En) (3.34)

χ̃ij↓ ≡ 〈c†i↓cj↓〉 =
∑

nm<L

〈(vinγn↑ + u∗inγ
†
n↓)(v

∗
jmγ

†
m↑ + ujmγm↓)〉

=
∑

n<L

u∗inujnf(En) + vinv
∗
jnf(−En) = χij↑ (3.35)

This allows the definition of χij ≡ χij↑ = χij↓.

Note that for a numerical evaluation on a computer one uses a different form for the

expressions of the preceding expectation values.11

101− 2f(x) = 1− 2 1
eβx+1

= eβx+1−2
eβx+1

= eβx−1
eβx+1

= eβx/2−e−βx/2

eβx/2+e−βx/2 = tanh(βx
2
)

11For the implementation on a computer one does not use the parametrization in terms of un and vn and the
explicit structure of the unitary matrix U (this allows in addition to incorporate magnetic systems). We
give the expressions for all order parameters in terms of the different notation in which the eigenvectors
of the BdG equation are wn = (un,vn)

T with 2L eigenvalues {En} and the unitary matrix U has the wn

as colums. With this notation we have the relations

〈γ†
nsγms′〉 =

{
δnmδss′f(En) if s =↑
δnmδss′f(−En+L) if s =↓

(3.36)
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In this work only the T = 0 case is considered. The above expressions then read:

ni↑ =
∑

n<L

|vin|2 = ni↓ =
1
2ni (3.39)

∆ij = −Jij
2

∑

n<L

(v∗jnuin + v∗inujn) (3.40)

χ̃ij↑ =
∑

n<L

vinv
∗
jn = χij↓ (3.41)

Finally it is noted that a solution of the BdG equation Eq. (3.6) amounts to a solution of

the explicit eigenvalue problem while fulfilling the above self-consistency relations. How this

is done in practice is described in the last section of this chapter, Sec. 3.4.

Then the evaluated expectation values are the following

χ̃ij↑ =
∑

nm<L

〈(w∗
inγ

†
n↑ − wi(n+L)γn↓)(wjmγm↑ − w∗

j(m+L)γ
†
m↓)〉

=
∑

n<L

w∗
inwjnf(En) +w∗

i(n+L)wj(n+L)f(En+L)

=
∑

n<2L

w∗
inwjnf(En) (3.37a)

χ̃ij↓ =
∑

nm<L

〈(w∗
i(n+L)γ

†
n↑ − w(i+L)(n+L)γn↓)(w(j+L)mγm↑ − w∗

(j+L)(m+L)γ
†
m↓)〉

=
∑

n<L

w∗
(i+L)nw(j+L)nf(−En) + w∗

(i+L)(n+L)w(j+L)(n+L)f(−En+L)

=
∑

n<2L

w∗
(i+L)nw(j+L)nf(−En) (3.37b)

〈cj↓ci↑〉 =
∑

nm<L

〈(w∗
(j+L)nγ

†
n↑ − w(j+L)(n+L)γn↓)(wimγm↑ − w∗

i(m+L)γ
†
m↓)〉

=
∑

n<L

w∗
(j+L)nwinf(En) + w∗

(j+L)(n+L)w(i+L)(n+L)f(En+L)

=
∑

n<2L

w∗
(j+L)nwinf(En) (3.37c)

The occupation numbers can be obtain with nis = χiis. All these expressions are valid also for a magne-
tized system.

For zero temperature T = 0 they reduce to (as En > 0 for n < L and En < 0 for n > L)

χ̃ij↑ =
∑

n<L

w∗
i(n+L)wj(n+L) (3.38a)

χ̃ij↓ =
∑

n<L

w∗
(i+L)nw(j+L)n (3.38b)

〈cj↓ci↑〉 =
∑

n<L

w∗
(j+L)(n+L)w(i+L)(n+L) (3.38c)
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3.3. Renormalized mean-field theory (RMFT)

In this section the Gutzwiller approximation introduced in Sec. 2 is used to derive a renor-

malized mean-field theory (RMFT) that takes into account combinatorial correlations due

to a strong Coulomb repulsion. The idea is to employ the Gutzwiller approximation for the

evaluation of expectation values when deriving the effective one-particle hamiltonian from

the full microscopic many-body hamiltonian. The effective hamiltonian which then has a

renormalized form is eventually solved within the BdG framework.

3.3.1. Derivation of a renormalized hamiltonian

To be concrete and due to the application of interest in Sec. 4 the derivation is performed

for a specific decomposition of the t-J-model hamiltonian Eq. (2.20). To begin, the spin

interaction term of the t-J-model is decomposed with Hartree-Fock mean-field arguments as

justified and derived in Sec. C. From here on it is necessary, as was already done in Sec. 2, to

distinguish expectation values in a non-correlated, preprojected state 〈·〉0 and a correlated,

projected state 〈·〉. It holds with χ̃ij ≡ χ̃ij↑ = χ̃ij↓ and ∆̃ij ≡ 〈cj↓ci↑〉 12

〈Si · Sj〉0 = −3

4
(χ̃∗

ijχ̃ij + ∆̃∗
ij∆̃ij) ,

1

4
〈n̂in̂j〉0 =

1

4
(−χ̃∗

ijχ̃ij + ∆̃∗
ij∆̃ij) (3.42)

For the expectation value of the spin-interaction term an approximation in terms of a renor-

malized expectation value in the non-correlated system was derived in Sec. 2 in Eq. (2.54).13

It was further shown in Sec. 2 that the charge density interaction is not renormalized, such

that

〈Si · Sj〉 Gutzw.
= gJij〈Si · Sj〉0 ,

1

4
〈n̂in̂j〉 Gutzw.

=
1

4
〈n̂in̂j〉0 (3.43)

It then follows

〈Si · Sj − n̂in̂j〉 Gutzw.
= −(34g

J
ij − 1

4)χ̃
∗
ijχ̃ij − (34g

J
ij +

1
4)∆̃

∗
ij∆̃ij (3.44)

The approximation of the expectation value for the hopping process was aready given in

Eq. (2.59)

〈ciscjs〉 Gutzw.
= gtij〈ciscjs〉0 = gtijχ̃ijs (3.45)

With this and by mean-field (MF) decoupling the t-J-hamiltonian, we can finally evaluate

12See the appendix Sec. C for a derivation and reference for this decomposition.
13Remember that for a system that is persistently below half filling the expression for gJ derived in Eq. (2.53)

is equivalent with that of Wang et al. (2006). The same is true for gt.
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its expectation value in order to obtain an approximation ERMFT for the energy E ≡ 〈H〉.

〈H〉 Gutzw.+MF≃ ERMFT ≡−
∑

(ij)s

gtijtij(χ̃
∗
ijs + h.c.)

−
∑

〈ij〉

(34g
J
ij − 1

4)Jij χ̃
∗
ijχ̃ij −

∑

〈ij〉

(34g
J
ij +

1
4)Jij∆̃

∗
ij∆̃ij

−
∑

i

(µ− ǫi)n̂i (3.46)

where summations are over pairs of nearest 〈ij〉 or over nearest and next nearest neighbors

(ij), respectively.

A variational calculation with respect to all self-consistent parameters as explained in

Sec. C yields the effective hamiltonian14

HRMFT =−
∑

(ij)s

gtijtijc
†
iscjs + h.c.

−
∑

〈ij〉

(
(34g

J
ij − 1

4)Jijχ̃
∗
ijc

†
i↑cj↑ + h.c.

)
−
∑

〈ij〉

(
(34g

J
ij +

1
4)Jij∆̃ijc

†
j↑c

†
i↓ + h.c.

)

−
∑

i

(µ− ǫi)n̂i (3.47)

From here the convention that tij is a L × L matrix that has non-zero entries only for

nearest and next-nearest neighbors and that Jij is a L×L matrix that has non-zero entries

only for nearest neighbors is assumed. With the redefinition 1
2Jij → Jij the hamiltonian can

be written as15

HRMFT =−
∑

ijs

(
gtijtij + (34g

J
ij − 1

4)Jijχ̃
∗
ij

)
c†iscjs

−
∑

ij

(
(34g

J
ij +

1
4)Jij∆̃ijc

†
j↑c

†
i↓ + h.c.

)
−
∑

i

(µ− ǫi)n̂i (3.49)

14 The variation with respect to the Gutzwiller factors gt ≡ gt(ni, nj) and gJ ≡ gJ(ni, nj) is not performed
here due to reasons explained in the following section. Further note that a formal spin-asymmetry is
introduced in the χij-term of the hamiltonian Eq. (3.47) because we defined χij ≡ 〈c†i↑cj↑〉.

15An intermediate step yields the following hamiltonian

HRMFT =−
∑

ijs

(
gtijtij + ( 3

4
gJij −

1
4
)Jij

1
2
χ̃∗
ij

)
c†iscjs

−
∑

ij

(
( 3
4
gJij +

1
4
)Jij

1
2
∆̃ijc

†
j↑c

†
i↓ + h.c.

)
−

∑

i

(µ− ǫi)n̂i (3.48)

Here the factors 1
2
in front of the χ̃ij- and the ∆̃ij-term are due to different reasons. For the kinetic term

and the χij term one can write
∑

〈ij〉 . . . c
†
i↑cj↑+h.c. =

∑
i〈j〉i

. . . c†i↑cj↑ where 〈j〉i denotes summation over
all sites j that are nearest neighbors of i. But still one has to account for the spin summation that now also
affects χij with a factor 1

2
. For the ∆̃ij-term the evaluation of the sum over pairs is not possible, but due to

the symmetry ∆̃ij = ∆̃ji one can nevertheless write
∑

〈ij〉 ∆̃ij(c
†
j↑c

†
i↓ +h.c.) = 1

2

∑
i〈j〉i

∆̃ij(c
†
j↑c

†
i↓ +h.c.).

Finally a summation
∑

i〈j〉i
is the same as

∑
ij if the preceding convention for the entries of tij and Jij

is employed.
Following the convention used in Garg et al. (2008), we drop the factor 1

2
in the hamiltonian corre-

sponding to a replacement 1
2
Jij → Jij and obtain Eq. (3.49).
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Finally the following definitions are employed

Hij ≡− gtijtij − (34g
J
ij − 1

4)Jijχ̃
∗
ij − δij(µ− ǫi) (3.50)

∆ij ≡(34g
J
ij +

1
4)Jij∆̃ij (3.51)

to obtain the corresponding BdG equation

∑

j

(
Hij ∆ij

∆∗
ij −H∗

ij

)(
uj

vj

)
= En

(
ui

vi

)
(3.52)

which is of the form of Eq. (3.6).

From this one calculates ∆̃ij, χ̃ij and ni as described in Sec. 3.2.

3.3.2. Interpretation of the renormalized BdG equation

Which physical meaning do the quantities ∆ij , χij, ni, ∆̃ij and χ̃ij, the hamiltonian HRMFT

and the corresponding variational ground state

|ψRMFT〉 ≡
∏

n<L

γ†n↓

∏

i<L

c†i↓|vac〉 (3.53)

have? All of them are obtained by solving the renormalized BdG equation Eq. (3.52).

The straightforward interpretation already used by Zhang et al. (1988) and by most au-

thors today is to make the identification |ψ0〉 ≡ |ψRMFT〉.16 Thus the pre-projected state

|ψ0〉 — employed throughout in Sec. 2 when deriving the Gutzwiller factors — is thought

to be equal to the state |ψRMFT〉 which is determined by HRMFT. One argument for this

identification is that |ψRMFT〉 has the same functional form as |ψ0〉. Both have the form of

a generalized BCS state which is far from being as complicated as the form of an exactly

projected state |ψ〉 ≡ P|ψ0〉.17 Having made this identification, all physical quantities can

be obtained with the arguments of Sec. 2 by properly rescaling the expectation value in the

state |ψ0〉 ≡ |ψRMFT〉. Then it holds for the physical expectation values 〈·〉 in the correlated

system |ψ〉 with the definition of the Gutzwiller factor for a hopping process gtij in Eq. (2.58)

〈c†iscjs〉 = gtij〈ψRMFT|c†iscjs|ψRMFT〉 = gtijχ̃ij (3.54a)

〈c†iscis〉 = 〈ψRMFT|c†iscis|ψRMFT〉 = nis (3.54b)

OP∆
ij ≡ 〈ci↓cj↑〉 = gtij〈ψRMFT|ci↓cj↑|ψRMFT〉 = gtij∆̃ij (3.54c)

Here the renormalization of the anomalous expectation value 〈ci↓cj↑〉 is derived with similar

arguments and an analogous calculation as compared to the renormalization of the hopping

process.

16For example, Wang et al. (2006) states “|ψ0〉 is determined by HRMFT, so are the variational order param-
eters.”

17 Another argument for the identification |ψ0〉 ≡ |ψRMFT〉 will be presented in the following but is much
more subtle.
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The author doubts that this straightforward interpretation which builds on the identifica-

tion of |ψ0〉 ≡ |ψRMFT〉, is completely sound. A first criticsm is based on an inspection of the

distribution of different energies among the different physical processes in the system. Such

an inspection is in the spirit of the Gutzwiller approximation.18 As |ψRMFT〉 is the varia-

tional ground-state corresponding to ERMFT or equivalently HRMFT, it is fully governed by

the renormalized energy scales. One can therefore state that, e.g. |ψRMFT〉 incorporates the
fact that hopping is unfavorable in areas of density ni ∼ 1. In the renormalized system it

is not possible to gain much energy in these areas such that electrons will e.g. rather be

localized to augment their potential energy. This is a direct consequence of a small effec-

tive hopping parameter gtijtij ≤ tij . One can therefore state that the ground state |ψRMFT〉
incorporates already much of the energetic aspects of the physics of a projected state |ψ〉
making it questionable if |ψRMFT〉 can nevertheless be identified with |ψ0〉. To be precise,

the just described reduction of kinetic energy that mirrors a feature of a correlated sys-

tem, has to be understood as a relative statement made in comparison with the variational

ground-state |ψ′
0〉 of a non-renormalized hamiltonian with bare parameters tij , Jij . Only the

relative statement: gijtij is smaller than tij is meaningful. Therefore here the ground-state

|ψ′
0〉 leading to the uncorrelated energy scales is proposed as a much more intuitive choice

for |ψ0〉 as compared to |ψRMFT〉. The interpretation of |ψRMFT〉 on the other hand cannot

be fully clarified. But although its interpretation as a physical state is questionable, there

is no doubt that in the combination with the renormalized hamiltonian HRMFT one is still

able to obtain a good approximation for certain quantities of an exactly projected system.

The inspection of these quantities leads to further aspects of the argumentation. The

first question one can pose concerns the kinetic energy:19 Is Ekin =
∑

ij g
t
ijtijχ̃ij a mean-

ingful approximation for the kinetic energy in the projected wave function |ψ〉? Yes, it

is without doubt and independent of the interpretation of |ψRMFT〉. The energy quantity

gtijtijχij ≡ gtijtij〈ψRMFT|c†iscjs|ψRMFT〉 is explicitly present in HRMFT. Its resemblance to

the energy tij〈ψ|c†iscjs|ψ〉 is the basis of the Gutzwiller approximation and therefore for the

derivation of HRMFT. This resemblance is at least qualitatively correct as it is the outcome

of a variational calculation with the variational wave function |ψRMFT〉 subject to certain

physical constraints. That it is even quantitatively close is astonishing and was checked with

variational Monte Carlo methods already by Zhang et al. (1988).

From the way it was just argued that the energy quantity gtijtij〈ψRMFT|c†iscjs|ψRMFT〉
resembles tij〈ψ|c†iscjs|ψ〉 one could now conlcude that |ψ0〉 resembles |ψRMFT〉.20 But this

conclusion is not obvious in the authors mind. Consider a hypothetical calculation with an

exactly projected state |ψ〉 = P|ψ0〉. After projection of |ψ0〉 one must minimize the energy

18We can formulate the assumption of the “Gutzwiller approximation” in this way: a crude adaption of the
energies for different processes leading to a renormalized hamiltonian is an approximate description of
its physical behavior. In this light the “Gutzwiller approximation” states that the physical behavior is
mainly due to energetical questions and not much influenced by the quantum correlations induced by the
explicit structure of the true state |ψ〉 of the system. To be consistent with the original assumption one
should therefore judge the argument which follows in the text above, more important than the preceding
argument referring to the structure of the state.

19The Fock-shift contribution |χij |
2 is not considered here. We discuss the simplest case of a hamiltonian

that is governed only by hopping, pairing and local potentials.
20This refers to the second argument mentioned in footnote 17.
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respecting the functional form of |ψ〉 but in dependence of the variational parameters that are

as well present in |ψ0〉. This variation is clearly subject to the effect of projection such that on

a qualitative level one can, for example, say that it will assign much fewer energy to hopping

processes and more to spin exchange processes as without projection. This characteristic

feature is consistent with the Gutzwiller projection and reflected in the approximation of the

“exactly projected variation” via the renormalized terms in ERMFT. As already stated in the

preceding paragraph, the result of the approximated variational calculus for the value of the

kinetic energy should therefore qualitatively resemble the result of the exact variation. But

the interpretation of the optimized set of variational parameters is a different question, as

it is a much more detailed result related to the microscopic structure of the states. Imagine

to take this set of exactly calculated variational parameters and plug it into the functional

form of |ψ0〉. Then, one faces a state the parameters of which were optimized with respect to

a completely different functional form, namely P|ψ0〉. The physical behavior of the system

|ψ0〉 is then the one of an uncorrelated system,21 which means e.g. that it will have the

energy scales of an uncorrelated system. But still one has to be careful. The state |ψ0〉 is

in the following sense not a physical, uncorrelated state, as its parameters, optimized to the

correlated case, will in general not fulfill the self-consistency equations of the uncorrelated

system.

In the case of the derivation of |ψRMFT〉 there is a substantially different aspect. Also

in this case the variational parameters are adjusted in order to respect the energetics of

the correlated system due to the renormalization which leads to a meaningful value of the

variational energy. But after the process of variation is completed, in this case it is not

possible to obtain a corresponding un-correlated state |ψ0〉 by plugging in the just optimized

variational parameters in a completely different functional form. Already from the beginning

one assumed the form of |ψ0〉 for the variational wave function |ψRMFT〉. This form is a much

worse ansatz for the variational wave function than the projected form, such that |ψRMFT〉
can neither be identified with an approximation for |ψ〉 but even less with an uncorrelated

state |ψ0〉.
Having made this argumentation, the result for the order parameter OP∆

ij in Eq. (3.54c)

is not to be justified as it completely relies on the identification |ψ0〉 = |ψRMFT〉. The

author thinks that a clear statement about the order parameter cannot be made. Only the

energy gap ∆ij of HRMFT is a meaningful quantity in terms of the Gutzwiller approximation

considered here. The gap ∆ij is self-consistently determined and incorporates the effects

of locally augmented spin-correlations and reduced hopping parameters. This is consistent

with the scenario of an experiment that measures the gap of a strongly correlated system

approximately described by HRMFT. There one would clearly measure the value ∆ij, neither

∆̃ij nor OP∆
ij .

Comparison of a correlated with an uncorrelated system In Sec. 4 we aim to

compare a correlated with an uncorrelated system. There, we will proceed in the way that

21Insertion of the variational parameters obtained with P|ψ0〉 in |ψ0〉 corresponds to “reversing” the projec-
tion.
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was also used by Garg et al. (2008). They compare two systems, one of which described by

a bare and the other by a renormalized hamiltonian. Both are taken with the same hopping

parameters tij and impurity potentials εi, but with spin correlations Jij that are scaled with a

constant factor in order to have ∆bare
ij = ∆renorm.

ij
22 in the homogeneous regions of the system,

far away from impurities. Having in mind the argumentation just made, this fixing of the

value of the gap ∆ij is the only transparent way in order to make a meaningful comparison

between the value for a supercurrent in a correlated and an uncorrelated system, also because

the supercurrent is approximately proportional to ∆ij.
23 Doing the same calculation for two

systems where one fixed OP∆bare
ij = OP∆renorm.

ij or as a third possibility ∆̃bare
ij = ∆̃renorm.

ij is

obscure. To confirm this, we analyze these situations numerically in Sec. 4.7.

Impurity potential renormalization To conclude this section about the interpretation

of the renormalized BdG equation we briefly address the possibility to incorporate a renor-

malization term of the impurity potential in HRMFT. As mentioned in footnote 14, in the

renormalized hamiltonian of Eq. (3.49), we did not account for the variation of the Gutzwiller

factors with respect to the local densities ni. With this we proceed in the way as authors like

Tsuchiura et al. (2001), Raczkowski and Poilblanc (2009) and Garg et al. (2008) do. Other

authors like Fukushima et al. (2009), Zhang et al. (1988) and Li et al. (2006) include it in

their calculations. There is no doubt that a straightforward variational calculation respecting

ni as a parameter must do so, also mentioned in the theoretical work of Wang et al. (2006).

Nevertheless, this is not done here for a consistency reason independent of the variational

calculus. The incorporation of renormalization terms for the potential leads to completely

different effective impurity potentials. This fact makes a meaningful comparison with an

uncorrelated state impossible as this is of course subject to the bare potentials.24 We de-

cided therefore not to take into account the impurity potential renormalization and regret

that due to numerical reasons, we cannot provide any comparisons with calculations which

include it, in order to support our assertion considering a consistent comparison.

3.4. Convergence of the iterative solution to the BdG

equation

In this section results that concern the numerical evaluation of the BdG equation Eq. (3.6)

and its renormalized counterpart Eq. (3.52) are presented. These are results relevant to

the practical work making it unnecessary to read this section if one is only interested in

22∆bare
ij denotes the self-consistent value of the gap in the bare, non-renormalized, uncorrelated system,
obtained with a standard BdG evaluation. ∆renorm.

ij denotes the self-consistent value of the gap in the
renormalized, correlated system, obtained in a RMFT calculation.

23Confer Sec. A.
24Another aspect is the following. Impurity potential renormalization ensures that the density in the system

is always below ni < 1. This has the effect that |ψRMFT〉 gets much closer to a veritable projected state
P|ψ0〉. But if this is the case the whole ansatz of the renormalized BdG equation is contradictory as
it is based on the fact that gtijtij〈ψRMFT|c

†
iscjs|ψRMFT〉 is a meaningful value for the kinetic energy in

the correlated system. If |ψRMFT〉 has all features of P|ψ0〉, than the renormalization is meaningless and
contradicts the original idea of the ansatz.
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understanding Sec. 4.

3.4.1. General convergence criteria

Usually, the BdG-equations Eq. (3.6) are solved iteratively on a computer. One initializes

the hitherto unknown matrix HC
25 with an initial guess for ∆ij, χij, ni and µ. This is

usually not a very good one: e.g. in the case of inhomogeneous systems it does not take into

account a spatial variation of the parameters.

Then a sequential procedure of diagonalizing HC and a following calculation of ∆̃ij, χ̃ij,

ni and µ from the eigenvectors (u v)T is carried out. If the procedure works, at each step

of the iteration, the mean-field approximation of energy expectation value 〈H〉 decreases

and the values of the self-consistent parameters approach a unique solution. We can already

now state that when working without a renormalized hamiltonian, this method will almost

always work. Why is this so? And why are there considerable problems when working with

a renormalized hamiltonian?

We assume that the following system of equations has a unique solution

HC(∆̃ij , χ̃ij ,ni, µ)wn = Enwn (3.55a)

with

χ̃ij =
∑

n<L

w∗
i(n+L)wj(n+L)f(En+L) (3.55b)

ni = χii (3.55c)

∆̃ij =
∑

n<L

w∗
(j+L)(n+L)w(i+L)(n+L)f(En+L) (3.55d)

Here we adopted the notation of Eq. (3.38). It was already stated that this is an equivalent

formulation of a variation of the mean-field approximation of 〈H〉, the direct representation

of which in an operator space that has been mapped to C by application of the Fermi function

in Eq. (3.25).

To obtain this unique solution with iterations one proceeds, using the index ν to denote

an iteration, as

HC(∆̃
ν−1
ij ,χ̃ν−1

ij , nν−1
i , µν−1)wν

n = Eν
nw

ν
n (3.56a)

with

χ̃ν
ij =

∑

n<L

wν∗
i(n+L)w

ν
j(n+L)f(Eν

n+L) (3.56b)

nνi = χν
ii (3.56c)

∆̃ν
ij =

∑

n<L

wν∗
(j+L)(n+L)w

ν
(i+L)(n+L)f(Eν

n+L) (3.56d)

These equations are too complicated to be analyzed in a meaningful way. We consider

therefore an easier example — the spatially homogeneous case that can be solved in k-space.

25See Eq. (3.5) to check that this is the l.h.s. of the BdG equation.
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We rename n to k to signify that the unitary transformation that diagonalizes HC is a

discrete Fourier transform. We set |∆̃ij| ≡ ∆ and ni ≡ n and perform an evaluation.26

Momentum space Consider the case without χ. In k-space, the form of the self-consistency

relation for the order parameter is commonly known as the gap equation of an extended BCS

theory. For a pure d-wave order parameter it reads

∆ =
1

L

∑

k∈BZ

Jeff
2

(cos kx − cos ky)
∆k

2Ek
(3.57)

where

∆k = −2∆(cos kx − cos ky) (3.58)

ξk = −2t(cos kx + cos ky)− µ (3.59)

Ek =
√
ξ2k +∆2

k (3.60)

where Jeff is a coupling constant that will later contain a renormalization.

If we do not consider the Gutzwiller case, an iterative solution can be done only by solving

this equation. Again with an initial guess for ∆, ∆0 and then iteratively calculating ∆ν+1 by

plugging in ∆ν on the r.h.s. of Eq. (3.57). This equation can be analyzed using the Banach

fixed point theorem. For this we define the map

G(∆) ≡ 1

L

∑

k∈BZ

Jeff
2

(cos kx − cos ky)
∆k

2Ek
(3.61)

The Banach fixed point theorem states that if a function F (x) is a contraction for all

x ∈ D ⊂ X (X a vector space which provides a norm, here just the euclidian norm), i.e. if

|F (x1)− F (x2)| ≤ q|x1 − x2| (3.62)

for a q < 1, then there exists a unique fixed point xf for which F (xf ) = xf holds. This fixed

point can be obtained by calculating the sequence xν+1 = F (xν) for an arbitrary starting

point x0. Convergence is exponential.27 For a one-dimensional problem, i.e. x ∈ D ⊂ R,

the weaker condition F (x)′ ≤ q is already sufficient. But also for x ∈ D ⊂ R2 or a higher

dimensional space, it is useful to consder ∂xiF (x): If F (x) is a contraction in any small

subset of D, the iteration procedure will at least converge if we start close enough to the

solution.28 For two values of x very close to each other |x1 − x2| < ǫ we see that Eq. (3.62)

is equivalent to the condition for the partial derivatives

∂xiF (x) ≤ q ∀ xi (3.63)

26In this chapter, there is no need to make the rigorous distinction between ∆̃ij and ∆ij such that in the
following, we drop the tilde |∆̃ij | ≡ ∆ for notational simplicity.

27See e.g. Forster (2008, Chap. 8, p. 88).
28This investigation is rather an inspection of the stability of the procedure, i.e. of the attractiveness of the

fixed point.
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Figure 3.1.: Plot of G(∆) and G′(∆) as given in Eqs. (3.64) for Jeff = 2 (blue), Jeff = 1
(red) and Jeff = 0.4 (yellow). This is for a square 2D system of L = 121 lattice sites, hopping
t = 1 and µ = 0. Note that the fixed point values for ∆ are given by the intersections of
the green line (corresponding to ∆) with the other lines. This is for a square 2D system of
L = 121 lattice sites and hopping t = 1.

for a q < 1. Knowing this, we inspect the derivatives of the gap equation Eq. (3.57).

3.4.2. Convergence of a standard BdG calculation

In the case of a standard BdG calculation, i.e. Eq. (3.61) and Jeff is a simple constant, it

is sufficient to analyze the ordinary derivative. We rewrite Eq. (3.61) and obtain for the

derivative

G(∆) =
Jeff
2

1

L

∑

k∈BZ

∆(cos kx − cos ky)
2

(4∆2(cos kx − cos ky)2 + (2t(cos kx + cos ky) + µ)2)1/2
(3.64a)

G(∆)′ =
Jeff
2

1

L

∑

k∈BZ

(cos kx − cos ky)
2(2t(cos kx + cos ky) + µ)2

(4∆2(cos kx − cos ky)2 + (2t(cos kx + cos ky) + µ)2)3/2
(3.64b)

In Fig. 3.1 the two functions of Eqs. (3.64) are plotted for an exemplary set of parameters.

It is obvious that G(∆)′ is smaller than one in the whole range of interest. For a conventional

BdG calculation without renormalization this shows that convergence is guaranteed. In the

case of an RMFT calculation this is different.

3.4.3. Convergence of a RMFT calculation

For the solution of a renormalized hamiltonian, we have to solve simultaneously

∆ = gJ (n)
J

2

1

L

∑

k∈BZ

(cos kx − cos ky)
∆k

2Ek
(3.65)

n =
2

L

∑

k∈BZ

∆2
k

(ξk + Ek)2 +∆2
k

(3.66)

where now

ξk = −2gt(n)t(cos kx + cos ky)− µ (3.67)
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Figure 3.2.: Plot of G(∆, nf = 0.8) for J = 1 (blue), for J = 0.5 (red) and for J = 0.2
(yellow) together with ∆ (green) versus ∆. All other parameters in Eq. (3.69) are fixed to
their value in a selfconsistent solution.

with renormalized spin interaction constant gJ(n)J and hopping gt(n)t. This is solved with

two initial guesses ∆0 and n0, and then iteratively calculating ∆1, from this then n1, from

this again ∆2 and so on.

To apply the Banach fixed point theorem again we define

G(∆, n) ≡ gJ (n)
J

2

1

L

∑

k∈BZ

(cos kx − cos ky)
∆k

2Ek
(3.68)

N(∆, n) ≡ 2

L

∑

k∈BZ

∆2
k

(ξk + Ek)2 +∆2
k

(3.69)

Now we have a two-dimensional map which should fulfill |
√
G(∆1, n1)2 +N(∆1, n1)

2 −√
G(∆1, n1)

2 +N(∆1, n1)
2| ≤ q|

√
∆1

2 + n12−
√

∆2
2 + n22|. Rewriting this in infinitesimal

form leads to an analyzation of the partial derivatives in order to make a statement about

stability and convergence of the iteration.

In Fig. 3.2 G(∆, n = 0.8) is plotted together with ∆, the intersection of which gives the

selfconsistent value ∆f for different values of J . The picture differs only quantitatively from

the case without Gutzwiller factors. Obviously, a calculation that fixes the density will

converge as good as a standard BdG solution.

In Fig. 3.3 now we plot the derivatives ∂∆G(∆, n), ∂nG(∆, n), ∂nN(∆, n) and ∂∆N(∆, n).

While panels (c), (d), (e) and (f) are only given for completeness, panels (a), (b), (g) and (h)

describe the hypothetical situation, that the iteration has already converged with respect to

one parameter. Even in this case, a very positive assumption, the stability of the iteration

with respect to n is delicate: clearly, in panels (g) and (h) the derivatives very rapidly assume

values above 1 in the region of interest, i.e. around half filling. Still one can make the following

statement. In panel (g) the highest value of the spin interaction J = 1, corresponding to

the blue line, yields a much more stable iteration than the lower values. In panel (f) this is

also true, except for one narrow peak of the blue line at n ≈ 0.89 below half filling, and two

other peaks for n > 1. The smaller values for the spin interaction yield broader peaks, and
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Figure 3.3.: Plots of ∂∆G(∆, n), ∂nN(∆, n), ∂nN(∆, n) and ∂∆G(∆, n) for J = 1 (blue),
J = 0.5 (red) and J = 0.2 (yellow) versus ∆ and n. All other parameters are fixed to
their value in a selfconsistent solution, in particular the explicit parameters nf = 0.8 and
∆f = 0.48, µf = −0.36 for J = 1, ∆f = 0.21, µf = −0.25 for J = 0.5 and ∆f = 0.057,
µf = −0.177 for Jf = 0.2. This is for a square 2D system of L = 121 lattice sites and
hopping t = 1.
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Figure 3.4.: Plot of the function DiffN. Left for J = 1 and right for J = 0.2. The different
colors refer to different arguments n2” n2 = 0.5 (blue), n2 = 0.7 (red), n2 = 0.9 (yellow) and
n2 = 1.1 (green).

therefore a more unstable behavior. In contrast to panel (g) and (h), the convergence in (a)

and (b) that depict the situation for ∆, is stable.

To inspect the case of Fig. 3.3(g) and (h) further, we finally define the function DiffN(∆, n)

DiffN(∆, n1, n2) ≡ |N(∆, n1)−N(∆, n2)| (3.70)

which allows to analyze the condition for the fixed point theorem in its finite version. In

Fig. 3.4 we plot DiffN(∆, n1, n2) for two values of J . In this figure, the preceding statement

is confirmed. Around half filling, convergence becomes unstable, while far away from half

filling it is not problematic. The left panel of Fig. 3.4 is for J = 1 while the right is for

J = 0.2. In the right panel a much stronger increase around half filling is visible, such that

again we conclude, that iterations are more stable for higher values of J .

To summarize: A RMFT calculation is best done for considerable hole doping, that is

for a density n ≤ 0.8 and with a sufficiently large spin interaction constant J . Otherwise,

it is not possible to obtain convergent solutions. A fact not discussed in this chapter that

turned out to be generic for inhomogeneous systems, is the destabilizing action of a too large

value of J . Then, due to reasons that could not be clarified, the system tends away from a

d-wave towards an unstructured solution. This leads to the conclusion that only in a small

interval for J and for low densities, one obtains physical, convergent solutions for RMFT

calculations. This severely restricts the RMFT method.

Luckily, for the results of Sec. 4, we were able to choose physical parameters in the narrow

convergent regime in order to obtain selfconsistent solutions. Being aware of the convergence

problem, in all calculations, we checked convergence for a large number of single lattice sites

with great care.





4. Supercurrent through GBs in the

presence of strong correlations

In this chapter we apply the techniques discussed in the previous parts of the thesis to the

problem of the determination of the critical current through grain boundaries (GBs). The

first four sections of this chapter are similar to the reference Wolf et al. (2012) except for

several additional remarks and extensions. The sections beyond provide further results.

4.1. Introduction

The model system of a GB is, in a certain respect, a particularly inhomogeneous system that

deals with very strong impurities that to our knowledge have not yet been described within

the Gutzwiller approach. The energy scale of the system is set by the hopping parameter

tbulk in the homogeneous bulk regions far away from the GB. In cuprates we typically expect

a Coulomb repulsion of U ∼ 20 tbulk and a spin exchange interaction Jij ∼ tij, where tij

is the hopping matrix element for nearest and next-nearest neighbor sites. It has been

shown that charge barriers at the GB lead to local impurity potentials1 of the order of

1In this thesis, we start with the results of Graser et al. (2010). In this publication a molecular dynamics
algorithm that allows to obtain the lattice structure at a GB is described. Using Slater-Koster tables,
the algorithm calculates hopping amplitudes and spin-exchange couplings, and as a second outcome, the
charge inhomogenities at single lattice sites resulting from the imperfection of the lattice.

In order to determine the absolute value of the impurity potentials which model the charge inhomogen-
ities in the theoretically reconstructed GB, one has to make an assumption about the screening length
in the CuO2 planes. Experimentally, it is only known that the screening length l is smaller than the
inter-atomic distance (the lattice spacing) a ≈ 4Å. In order to take into account this uncertainty, we
perform calculations for two values l = 1.2Å and l = 2Å.

Furthermore, it is instructive to see how the absolute value of the impurity potential is obtained by
the lattice-defect induced charging q of each lattice site. This charging q is positive or zero for almost
all lattice sites. To obtain the absolute value of the local impurity potential ε for one given site, one
explicitily integrates over the screened Coulomb interaction energy (a Yukawa potential). The result is a
quantity in units [energy × area]

ε̃ = −

∫ ∞

0

d2r
eq

4πǫ0

e−r/l

r
=

2πl

4πǫ0
qe = 2πq̄la0

e2

4πǫ0a0
= 2πq̄la02Ryd (4.1)

where ǫ0 ∼ 8.8510−12As/Vm, q̄ the local charging in units of e, a0 ∼ 0.53Å and 1Ryd ∼ 13.6eV. The
impurity potential ε (in units eV) is then obtained by reintroducing the fact that q is the charging for one
site, i.e. for a unit cell. We thus normalize using ε = ε̃/a2 for the lattice constant a ≈ 4Å such that

ε =
la0
a2

4πq̄Ryd (4.2)

With a0 ≃ a/8 and assuming l ≈ 2Å ≈ a/2 one obtains

ε ≈ q̄ 10.7eV (4.3)

and for l ≈ 1.2Å, ε ≈ q̄ 6.4eV.
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εi ∼ −20 tbulk (Graser et al. 2010) or more, therefore close to the GB, the estimate εi ∼ −U
applies. Although in the bulk regions of a hole-doped system, the local charge densities ni

are below half filling, the positive charges in the vicinity of the GB can induce sites with ni

well above half filling, even in the presence of strong Coulomb repulsion. As an example, in

Fig. 4.2(c), (d) and (e) local charge densities, impurity potentials and hopping amplitudes

are shown as a function of the distance from a GB with misalignment angle α = 44◦.

Such systems with strongly positively charged regions cannot be described by the standard

Gutzwiller approximation. We thus employ the implementation presented in this thesis in

Sec. 2.3. In Sec. 4.2, the formalism is justified for the particular case of a GB model and in

Sec. 4.3, technical details are given. In the sections starting from Sec. 4.4, we analyze our

results for the critical current and other quantities, calculated with the new method.

4.2. Model of a grain-boundary

Crystals as they appear in nature are never the mathematically well defined Bravais lattices

usually employed in solid state physics. A sample in the laboratory, for example, is never

perfectly clean. Moreover the crystal growth does not proceed in a globally uniform way but

starts at spatially separated grains. After the preparation of the sample is completed, to

each of these grains an area of perfect crystal orientation can be assigned. In two neighboring

grains, the perfect crystals will in general have a different orientation and the boundary region

in between is called a grain boundary. For a two dimensional CuO2-plane this situation is

schematically depicted in Fig. 4.1.

For the description of the GB system we use the Gutzwiller projected t-J-model. Within

Figure 4.1.: Schematic view of a two dimensional grain boundary in a CuO2 plane. Here
the misalignement angle α is defined. This figure is taken with permission from Graser et al.
(2010).
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the Hartree-Fock decoupling scheme it is given by the hamiltonian2

H =−
∑

ijs

(gtijtij + χ∗
ij)c

†
iscjs

−
∑

ij

(∆ijc
†
j↑c

†
i↓ + h.c.)−

∑

i

µin̂i (4.4)

with ∆ij ≡ (34g
J
ij +

1
4)Jij∆̃ij, (4.5)

χij ≡ (34g
J
ij − 1

4)Jijχ̃ij , (4.6)

where ∆̃ij ≡ 1
2(〈ci↓cj↑〉+〈cj↓ci↑〉), χ̃ij ≡ 1

2(〈c
†
i↑cj↑〉+〈c†i↓cj↓〉), n̂i =

∑
s c

†
iscis, and µi ≡ µ−εi.

The matrix for the tunneling amplitudes tij has non-zero entries for nearest and next-nearest

neighbor hopping which have been calculated jointly with the matrices for the spin-coupling

Jij and the local potentials εi in a molecular dynamics algorithm by Graser et al. (2010) in

order to incorporate the charge barriers and defects of the lattice at the GB.

The Gutzwiller factors in (4.4) are defined as derived in Sec. 2.3: gtij ≡ gtig
t
j and g

J
ij ≡ gJi g

J
j ,

where

gti ≡
√

2|1− ni|
|1− ni|+ 1

, (4.7a)

gJi ≡ 2

|1− ni|+ 1
. (4.7b)

For local densities ni ≤ 1 these expressions coincide with the commonly employed definitions

of Wang et al. (2006). By introducing the absolute values in their definitions we obtain a

renormalization that is symmetric with respect to half filling ni = 1. This is equivalent to a

local particle-hole transformation for sites where ni > 1. Due to the particle-hole invariance

of the Hubbard model3 from which the t-J-model is derived, this treatment is obviously

correct for a homogeneous system with ni ≡ n > 1.

The rigorous derivation was presented in Sec. 2.3. To summarize it: The basis is the

definition of a projection operator P ≡ ∏
i Pi that locally projects either doubly occupied

sites or holes out of a BCS type wave function |ψ〉0 depending on the local density:

Pi ≡
{
yn̂i
i (1−Di) if ni ≤ 1

yn̂i
i (1− Ei) if ni > 1

(4.8)

Here, Di = n̂i↑n̂i↓ and Ei = (1 − n̂i↑)(1 − n̂i↓) denote the projection on doubly occupied

and empty sites, respectively. Note that the selection of different projectors depending on

the local density is a natural extension of the operator yn̂i
i : this operator assigns different

weights to contributions from empty and singly occupied sites and thus ensures a projected

state |ψ〉 that can be transparently compared with the pre-projected state |ψ0〉 due to its

common set4 of local densities (Wang et al. 2006). The comparison of expectation values

2For the derivation see the calculations preceding Eq. (3.49).
3We only refer to the particle-invariance of the interaction term, confer the argumentation made in Sec. 2.
4It should be noted here, that the comparison we employ is not between the pre-projected state |ψ0〉 and
|ψ〉 but based on the considerations given in Sec. 3.3. This gives an answer to the question one might ask,
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Figure 4.2.: The lattice structure for a (520) GB with misalignment angle α(520) = 44◦ in
the x,y-plane (a). Orange lines mark the bonds defining the “channels” through the GB that
explicitly appear in the sum of Eq. 4.10. Results of a self-consistent calculation for the (520)
GB at a bulk filling of n = 0.8 without (i) and with (ii) Gutzwiller factors include the d-wave
projection of the order parameter ∆ij (b) and the local density ni (c). In addition the local
impurity potentials εi (d) and the averages over all nearest neighbor (t) and next-nearest
neighbor (t′) hopping parameters of single sites i (e) are shown. Energies are measured in
units of tbulk = 1. The spin-interaction is calculated from the nearest-neighbor entries of tij
for (i) as Jij = 2.38tij and for (ii) as Jij = 0.9tij so that ∆bulk = 0.275tbulk has the same
value for both calculations. The precise values of the impurity potentials εi are obtained
from the charge fluctuations assuming a screening length l = 2Å.

evaluated with the wave functions |ψ0〉 and |ψ〉 = P|ψ0〉 presented in Sec. 2.3, yields the

results of Eq. (4.7).

It remains to be justified that the implementation of a symmetric renormalization around

half filling, or equivalently, projecting out empty and doubly occupied sites in the free wave

function, is physically meaningful. The argumentation here is very similar to the original

idea of Gutzwiller, to project doublons out of the wave function due to their energy cost.

Our extension is obviously justified for bulk regions: In an environment where µi is large

enough to yield ni > 1, a local particle-hole transformation leads to the removal of empty

why in Fig. 4.2(c) the densities of the correlated (i) and the uncorrelated (ii) system are not exactly on
top of each other. Going back further, we trace the reason to the fact that in Sec. 2.3 we approximately
evaluated the constraint 〈n̂i〉 = 〈n̂i〉0 by using the Gutzwiller approximation, not exactly. Already at that
stage, exact correspondence is lost. But obviously, the current through the GB should not depend on the
details of the density distribution at the GB, only on its generic features. In Sec. 4.5 the generic feature
is identified as the large fluctuations also visible in Fig. 4.2(c) for both calculations (i) and (ii), leading to
a region close to half filling.
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sites from the wave function. Also at the boundary of such a region the definition of Eq. (4.8)

is consistent since on a site with µi ∼ U , the gain of potential energy cancels the cost of

double occupancy, independent of the situation on neighboring sites. Thus the energy cost

to create a holon at site i is of the size of U and consequently it is projected out.

Note that this procedure is possible in the Gutzwiller approximation only due to its fun-

damental assumption that inter-site correlations can be neglected. In the framework of the

Gutzwiller approach it is a consistent improvement of the wave function modeling in the

spirit of assigning different weights to different sites with the fugacity factor yn̂i
i . It is a

heuristic, very detailed and sophisticated method of minimizing the energy of a system de-

scribed in a phenomenological mean-field picture. Below we will show that this picture is

sufficiently realistic to accurately describe the physics of superconducting charge transport

through a GB.

4.3. Technical Proceeding

The renormalized model hamiltonian of Eq. (4.4) is evaluated within the Bogoliubov–de

Gennes (BdG) framework as discussed in Sec. 3.

To obtain a current carrying system we enforce constant phases with a difference φ = π/2

on the order-parameters ∆ij on either end of the sample, in the center of which the GB is

situated.5 The corresponding phase gradient induces finite currents6 given by

jij = −2gtijtij
∑

s

Im(〈c†iscjs〉). (4.9)

The normalized total current through the GB is

jc =
sin(α/2)

My

∑

xi<0,xj>0

jij , (4.10)

where xi and xj are the x-coordinates of sites on either side of the GB, α is the misalignment

angle and My the second Miller index of the (MxMyMz) GB.7 The factor sin(α/2)/My

normalizes the current to a unit length in y-direction.

To be able to compare with experimental results we employ the following relation (Graser et al.

2010) between the current jabsc in absolute units A/cm2 and the current in units [tbulk] = eV

jabsc =
∆exp

∆theo

NCu

ac

e

~
jc , (4.11)

5We performed calculations that imposed a Peierls phase on the boundaries of a GB model together with
periodic boundary conditions, in contrast to the calculations leading to the results that are presented
here. For these open boundary conditions were employed. The calculations using a Peierls phase yield
very similar results but convergence takes much longer (5000 instead of 1000 BdG iterations for an ordinary
(non-RMFT) calculation).

6The evaluation of Eq. (4.9) within the BdG framework is possible with the equations for χ̃ij , cf. Eq. (3.34).
The expression Eq. (4.9) can be easily derived using the continuity equation. One starts with a calculation
of the time evolution of the density operator n̂i.

7The misalignment angle α can be given as α = 2 arctan( aMx
bMy

), where a = 3.82Å and b = 3.89Å are the

lattice spacings in x- and z-direction, respectively. We note that the only sample with My 6= 1 we employ
is the (520) GB with My = 2.



50 4. Supercurrent through GBs in the presence of strong correlations

where NCu = 2 is the number of CuO2 planes per unit cell, α the misalignment angle and

a = 3.82Å and c = 11.7Å the lattice spacing in x- and z-direction, respectively. The values

∆exp ∼ 0.025eV and ∆theo = 0.275eV are valid for the bulk regions. In order to compensate

the smaller magnitude of the experimental quantities we employ the factor ∆exp/∆theo ≃ 0.09

where we make use of the fact that jc scales approximately linearly w.r.t. ∆. Due to numerical

reasons a calculation with the exact experimental quantities is not possible.8

Considering the system size, we note that calculations were performed in systems with

several supercells in y-direction in order to obtain samples with L ∼ 1500 lattice sites.9 For

this purpose one may imagine the pattern shown in Fig. 4.2(a) to be continued to the top

in a periodical way.

We also tried to calculate results for angles smaller than α710 ≈ 16◦, i.e. we checked

samples for a (810) GB and a (910) GB. Calculations with those samples take even more

computational time and lead to currents that are about one or two orders of magntiude too

small. This observation should be related to the fact that it is questionable in which sense

the limit α → 0 can be meaningfully described by the BdG formalism (for the ordinary as

well as for the RMFT calculation). For large angles it can be argued that the physics is

almost exclusively influenced by impurities breaking Cooper pairs at the GB. This is the

main effect that determines the maximum strength of the current, i.e. of jc. It is known that

this type of behavior can be well described on the Hartree-Fock mean-field level. But the

strength of the global current in the sample without impurities is a different question.

Finally we note that the codes employed to obtain the following results were checked by

successfully reproducing the data of Garg et al. (2008) and Graser et al. (2010).

4.4. Angle dependence of the supercurrent

In Fig. 4.3(a) and (b) we show on a logarithmic scale the dependence of the zero-temperature

supercurrent on the GB misalignment angle for a hole-doped system (n = 0.8). We compare

two types of calculations with experimental data taken from Hilgenkamp and Mannhart

(2002): (i) a standard evaluation of the GB-hamiltonian within the BdG framework (i.e.

gtij = gJij = 1) and (ii) an evaluation with the local Gutzwiller factors as defined in Eq. (4.7).

In order to provide a meaningful comparison of (i) and (ii) we employ the same hopping

matrices tij and impurity potentials εi for all calculations, but globally scale Jij to obtain

identical values for the d-wave order parameter in the bulk: ∆bulk = 0.275 tbulk. Note

that the d-wave projection of the order parameter ∆ij shown in Fig. 4.2(a) does not differ

qualitatively for the evaluation without (i) and with (ii) Gutzwiller factors, even at the GB.

As can be seen from Fig. 4.3 the supercurrent decays in both cases (i) and (ii) exponentially

with the GB angle. We also find that the current in the correlated system (ii) is almost one

order of magnitude smaller than in the system without correlations (i). As the screening

length l in the CuO2 planes is only approximately known we performed two calculations

8For a discussion of the scaling relation Eq. (4.11) see the appendix Sec. A.
9In Sec. A we show that this is sufficient to eliminate finite-size effects. In Sec. D we give an explanation of
the super-cell method.



4.4. Angle dependence of the supercurrent 51

10
-7

10
-6

10
-5

10
-4

10
-3

j c

(i) without correl.
(ii) with correl.
(iii) experiment

15 20 25 30 35 40 45
GB angle [°]

10
-7

10
-6

10
-5

10
-4

10
-3

j c

10
-7

10
-6

10
-5

10
-4

10
-3

j c

(a)

(b)

(c)

Figure 4.3.: Angular dependence of the critical current for GB samples with electron den-
sity n = 0.8 (a,b) and n = 1.2 (c). The impurity potentials have been calculated from the
charge fluctuations assuming a screening length of l = 2Å (a) and l = 1.2Å (b,c). The
current is given in units of tbulk. Depicted are calculations using the BdG hamiltonian of
Eq. (4.4) where for (i) all Gutzwiller factors are set to 1 and for (ii) all Gutzwiller factors are
taken as defined in Eq. (4.7). The theoretical values in (a) and (b) are compared to the same
experimental data (iii) taken from Hilgenkamp and Mannhart (2002). For the calculation
without correlations (i) we set Jbulk = 2.38 whereas for (ii) we set Jbulk = 0.9 in order to
obtain the same self-consistent d-wave gap ∆bulk = 0.275 in both cases. Lines serve as a
guide to the eye and are calculated as linear fits to the logarithm of the data points.

assuming different values of l, with l = 2Å for Fig. 4.3(a) and l = 1.2Å for Fig. 4.3(b).

For the choice of l = 2Å we obtain excellent agreement with the experimentally determined

critical currents over a wide range of GB angles.

In Fig. 4.3(c) we show the angle dependence of the current for an electron-doped system

with n = 1.2. Comparing panels (b) and (c) of Fig. 4.3, we find that the current is ap-

proximately symmetric with respect to hole- and electron-doping. Correlation effects are

known to be strongest at half filling where a Mott insulator is obtained in the Gutzwiller ap-

proximation. The dominant reduction of the current due to correlations should therefore be

caused by areas in the system where ni ∼ 1. These areas are equally present in the hole- and

electron-doped system in the transition region to the bulk (see Sec. 4.5). In the hole-doped

case such a region is already implied by the fact that, directly at the GB, the system is always

well above half filling. In the electron-doped case it is caused by large density fluctuations.
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Figure 4.4.: Left column (a,c,e): (710) GB with angle α(710) ∼ 16◦ and right column (b,d,f):
(520) GB with angle α(520) ∼ 44◦. In the first row (a,b) we show the value for the current
through each channel on a logarithmic scale. Channels through the GB are depicted for the
example of the (520) GB in Fig. 4.2(a) as orange lines. Negative currents are marked with
a circle around the data point. In the second row (c, d) the effective tunneling parameter
gtijtij is plotted where for the standard BdG calculation (i) gtij = 1. In the third row (e, f) we

show the local impurity potentials of the two sites connected by the corresponding channel.

These appear due to the charge fluctuations with the same magnitude in the electron- and

the hole-doped case. For a hole-doped example, Fig. 4.2(c) shows values for the density with

0.5 ≤ ni ≤ 2. Obviously, these arguments imply that the correlation effects are controlled

by the charge fluctuations. Furthermore, the fact that the narrow transition regions have a

similar extension for all angles explains that the exponential behavior w.r.t. the GB angle

appears in both calculations (i) and (ii): only the break-up of pairs by impurities (present in

(i) and (ii)) causes the exponential behavior while the correlation induced reduction of the

supercurrent is constant for all angles.

Fig. 4.4 allows further insight into the mechanism of charge transport at the GB. For large

angles, charge transport through the GB is carried almost entirely by few channels. The

GB region is governed by several bonds with black flowing currents (marked with circles in

Fig. 4.4) leading to circular current patterns. For a qualitative picture of these patterns in two

dimensions see Fig. 4.5. Our calculations show that the presence of strong correlations leads

to an almost homogeneous reduction of the current by one order of magnitude in all channels.

In addition one finds that the channels carrying the main current are exposed only to weak

impurity potential fluctuations, as seen by comparing the first (a,b) and the third (e,f) row

of Fig. 4.4. In the second row (c,d) of Fig. 4.4 we depict the effective, renormalized hopping

parameters gtijtij for the two cases (i) and (ii). Since they differ only slightly, it is clear that
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Figure 4.5.: The current pattern in the vicinity of a (410) GB (a) and a (710) GB (b) for a
standard BdG calculation. The evaluation for a RMFT calculation yields the same pattern
on a qualitative level. For a quantitative comparison see Fig. 4.4. The arrows in this figure
display the direction of the current, the red lines denote current flowing forwar, the blue
lines denote current flowing backward. The line thickness shows the current strength, while
the point size and color of the Cu sites correspond to the on-site potential. This figure is
taken with permission from Graser et al. (2010).

the current reduction is not due to a simple suppression of the hopping parameters by gtij
as they appear in Eq. (4.9). This observation confirms that correlations induce a significant

suppression of jc in the regions which are close to half filling, i.e. in regions at some distance

to the GB, and not directly at the GB where the system is well above half filling.
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4.5. The density distribution

In the preceding sections we explained how to theoretically determine the supercurrent

through GBs in its dependence on the misalignment angle. This can also be found in the

reference Wolf et al. (2012). The following sections are dedicated to supplementary remarks

and answers to open questions that may still exist, not present in this reference.
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Figure 4.6.: Density profiles for different GBs. These are calculations for one of the two
samples for each angle α, used in this thesis. The system is at n = 0.8 filling and calculations
without (i) and with (ii) Gutzwiller factors are shown. All other parameters are used as in
Fig. 4.3(a). Orange circles mark the transition region to the bulk which is close to half filling.
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Figure 4.7.: Density profiles for different GBs for the same systems as in Fig. 4.7 but for
electron-doping, n = 1.2.

In a RMFT calculation the density distribution is of fundamental importance as it directly

influences the renormalization of the hopping and spin-interaction constants tij and Jij .

Clearly, the renormalization factors gtij and gJij are smooth functions of the local densities

ni, i.e. the density distribution.

In Sec. 4.4 it was argued, that density fluctuations in the transition regions from the GB to

the bulk are responsible for the correlation driven reduction of jc as they lead to areas where

the system is close to half filling. For the renormlized system this implies small effective

hopping constants gtijtij. In Figs. 4.6 and 4.7 we depict the density distribution for hole-

and electron-doped systems, respectively. In these figures, orange circles mark the transition
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Figure 4.8.: Angle dependence of the critical current. The impurity potentials have been
calculated from the charge fluctuations assuming a screening length of l = 2Å (a) and
l = 1.2Å (b). The current is given in units of tbulk. Depicted are calculations for three setups
with different implementations of the Gutzwiller factors: (i) the plain BdG hamiltonian (4.4)
with all Gutzwiller factors set to 1 (ii) Gutzwiller factors as defined in (4.7) and (iii) constant
Gutzwiller factors calculated from the average density in the system. For the calculation
without correlations (i) we set Jbulk = 2.38 whereas for (ii) and (iii) we set Jbulk = 0.9 in
order to obtain the same self-consistent d-wave gap ∆bulk = 0.275 in both cases. Lines serve
as a guide to the eye and are calculated as linear fits to the logarithm of the data points.

regions that are close to half filling. Although regions close to half filling were not expected

for electron-doped systems, the figures show that these regions appear with approximately

the same extension in the hole- and the electron-doped systems. Clearly, the strong impurity

potentials induce fluctuations of the same magnitude independent of the doping.

4.6. Comparison with a globally renormalized system

In this section we consider the current in a globally renormalized system. For a global

renormalization, constant Gutzwiller factors are employed. These are calculated with the

average charge density n instead of the local densities ni. The globally renormalized system

is a third case (iii) interesting to compare10 with the two cases discussed in the preceding

section: (i) a standard evaluation of the GB-hamiltonian within the BdG framework, (ii) an

evaluation with the local Gutzwiller factors as defined in Eq. (4.7).

10For example, Tsuchiura et al. (2001) considered such a comparison.
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The globally renormalized system is controled by the same effective hopping amplitude

gbulktbulk in the large bulk regions as the correlated system (ii). In Fig. 4.8 the resulting

current is seen to be one order of magnitude smaller as the result for calculation (ii) and

clearly shows a different exponent for the exponential decrease: In panel (a) of Fig. 4.8

this is obvious from an inspection of the fitting curve, while in panel (b) only the first four

data points show a clearly different behavior. We suppose that due to the extreme current

reduction in case (iii), that the last two data points in (b) are not reliable.

The figure shows that a mere reduction of the hopping amplitude by a global Gutzwiller

factor gtij ≡ gt < 1 leads to a completely different result than taking the local Gutzwiller

factors. Thus the effects described in the preceding sections cannot be obtained by a simple

change of parameters, to which the global renormalization amounts. It furthermore confirms

that the conductivity of the whole sample is governed by the effects in the vicinity of the

GB region, otherwise the globally and the locally renormalized curves would coincide.

4.7. Different possibilities to compare uncorrelated and

correlated systems

To supplement the discussion about the interpretation of RMFT calculations made in Sec. 3.3

with numerical data we discuss results for different schemes to obtain a comparable uncorre-

lated system. Although we already concluded in Sec. 3.3 that the scheme that we employed

to obtain the results for jc in Sec. 4.4 is the only meaningful one, it is worthwhile to consider

other cases which are potentially relevant. This is important also to stress once again the

subtlety and care that has to be taken when working with an RMFT calculation.

4.7.1. Effects on the critical current

In Sec. 3.3, several possibilities (henceforth denoted (I), (II) and (III)) were considered to

obtain the physical d-wave order parameter ∆exp

∆exp
ij

(I)
= ∆ij = (34g

J
ij +

1
4)Jij∆̃ij (4.12a)

∆exp
ij

(II)
= gtij∆̃ij ≡ OP∆

ij (4.12b)

∆exp
ij

(III)
= ∆̃ij (4.12c)

where ∆̃ij ≡ 1
2(〈ci↓cj↑〉0 + 〈cj↓ci↑〉0).

We argued that possibility (I) is the only meaningful one if the aim is to make a transparent

comparison between the current carrying properties of a correlated and an uncorrelated

system. This applies because only if (I) is used, i.e. one fixes ∆uncorrelated
bulk = ∆correlated

bulk ,

one compares two systems with the same gap in the spectrum — we argued further that

in particular this energetic quantity is a reliable outcome of the Gutzwiller calculation in

contrast to a veritable order parameter OP∆
ij , that aims to describe the fraction of condensed

electrons (we do not claim that the condensate fraction in our Gutzwiller calculation is given
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Figure 4.9.: Angular dependence of the critical current. The impurity potentials have been
calculated from the charge fluctuations assuming a screening length of l = 2Å (a) and
l = 1.2Å (b). The current is given in units of tbulk. Depicted are calculations for two setups
with different implementations of the Gutzwiller factors: (i) the plain BdG hamiltonian
(4.4) with all Gutzwiller factors set to 1 (ii) Gutzwiller factors as defined in (4.7). For the
calculations without correlations (i) we set Jbulk = 2.4 in case I and Jbulk = 1 in case II. For
(ii) we set Jgutz

bulk = 0.9.

by ∆ij). Finally it can be shown in a simple numerical check, that jc scales approximately

linearly with the energy gap ∆ij and not with OP∆
ij or ∆̃ij. This check was done in Sec. A.

If nevertheless a comparison is based on fixing the gap in the corresponding uncorrelated

system in accordance with possibility (II), then a strongly reduced current in the uncorrelated

system is the consequence.11 This is clear as then ∆uncorrelated
bulk < ∆correlated

bulk which stills

controls the magnitude of jc. In Fig. 4.9 the cases (I) and (II) are plotted jointly with the

corresponding Gutzwiller calculation, used to fix the respective values of the order parameter

for the standard BdG calculations. It can be seen that if (II) is employed, the ordinary BdG

calculation yields almost the same result as the RMFT calculation (ii) — from this calculation

one would have to conclude, that correlations do not have any reducing effect on the current.

As this is a completely unphysical result it confirms that (II) is not a meaningul choice to

set up the determination of jc.

Finally, in accordance with possibility (III), one can fix the parameter ∆̃uncorrelated
bulk =

11In this case one fixes the order parameter of the uncorrelated system gtij∆̃
correlated
ij = ∆̃uncorrelated

ij to the
much smaller value (by reduction of gtij < 1) of the correlated system. We remind, that in the uncorrelated
case gtij ≡ 1.
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Figure 4.10.: For a (520) GB and a (610) GB, the spatial variation of |∆ij | in panels (a)

and of |gtij∆̃ij| in panels (b) is depicted. For these calculations the same parameters as in
Fig. 4.2 were used. In the case of (i), in panels (a) and (b) the same calculation was used. In
the case of (ii), in panels (a) and (b) the results of two different calculations fixing the value
of ∆ij (I) or of OP∆

ij = gtij∆̃ij (II) are depicted. For the calculation without correlations
(i) we set Jbulk = 2.38 in case (I) whereas for case (II) we set Jbulk = 1. For (ii) we set
Jbulk = 0.9 throughout.

∆̃correlated
bulk . The resulting current of the standard BdG calculation is about two orders of

magnitude larger than the Gutzwiller calculation.

4.7.2. Effects on the spatial variation of the gap

Although, possibility (II) fails to set up a comparison for the critical current jc the arguments

to derive it are nevertheless sufficiently good to consider it an interesting quantity that might

be the right way to approach the veritable condensate fraction in a truely correlated system.

In Fig. 4.10(a) and (b) we plot the spatial variation for the cases (I) and (II), respectively.

In both cases the RMFT and the standard BdG calculation yield a similar result, except

for one generic feature that can be identified. When employing (I) one does not perceive

any different length scale for the healing of the gap when comparing (i) and (ii). In con-

trast, comparison (II) in panels (b) of Fig. 4.10 shows a shorter healing length for the order

parameter OP∆
ij .

With these observations we cannot confirm the results of Garg et al. (2008) concerning

the healing length of |∆ij|. In this reference, a comparison of type (I) was made for the

behavior of |∆ij | in the vicinity of single impurities. They claimed that correlations lead

to a shorter healing length of the gap amplitude which is clearly not present in panels (a)

of Fig. 4.10. That we find a shorter healing length for comparison type (II) can rather be

traced back to the simple fact, that the spin-coupling is reduced by more than a factor of

one half in the calculation (II) as compared to (I).12 This reduced spin-coupling hampers

12And with that the gap ∆ij ≈ 0.14 for case (II) instead of ∆ij ≈ 0.275 for case (I).
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electron condensation and therefore the healing of the gap leading to a longer healing length

in the uncorrelated case (II). For the comparison to a single impurity, confer Sec. B.



5. Conclusion

In Sec. 2 the derivation of an extended Gutzwiller approximation was presented as a straight-

forward extension of the ansatz introduced by Wang et al. (2006) to treat inhomogeneous

systems. The derivation relies on the identification of an extended projection operator that

poses the new, symmetrized form of the Gutzwiller factors on mathematically save grounds.

Apart from the characterization of the supercurrent through grain boundaries, we expect that

our extension of the Gutzwiller projection approach is also instrumental for other strongly

inhomogeneous systems with intrinsic impurities or artificial structures (heterostructures).

In Sec. 3 the subtleties of standard BdG and RMFT calculations were discussed in detail.

In particular, the open questions regarding RMFT calculations do not seem to be much ad-

dressed in the literature. Furthermore, we made several statements concerning the practical

solution of renormalized BdG equations, identifying useful hints in order to enhance the un-

stable numerical solution. Also regarding this topic, the standard literature lacks examples.

A more detailed discussion would help to make a priori statements about the existence and

feasibility of numerical solutions.

In Sec. 4, using the new Gutzwiller setup and the theoretically reconstructed GB samples

of Graser et al. (2010), we found a reduction of the critical current of about one order of

magnitude as compared to the current determined within an uncorrelated model calculation.

These findings allowed to reproduce experimental results for the critical current over a large

range of GB angles. The reduction of the current was shown to be due to the intertwining

effects of large charge fluctuations and strong correlations. It can thus be understood that

experimental doping of the GB in order to moderate these fluctuations significantly improves

the current carrying properties which has already been observed for Ca-doped interfaces

(Hammerl et al. 2000; 2002).

We finally note that the effect of pinned vortices in the GB region or the influence of

macroscopic facetting extend over length scales larger than the ones considered in the present

model and should be subject to further study.
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A. Error analysis

In this chapter the assumptions made in Sec. 4 are justified with numerical results.

A.1. Scaling of the critical current with respect to the gap

In order to be able to make comparisons with experimental data, we employed the relation

Eq. (4.11) where it was assumed that the current scales approximately linearly with respect

to the gap |∆bulk|.
In order to confirm this assumption we first make a change of the energy scale in our

calculations. In an experiment one would usually expect a value of texp ≈ 0.4eV in the bulk

regions while we calculated with ttheo = 1eV in Sec. 4. This was done for numerical reasons

and the convention in most theoretical work to set t = 1.

Changing the energy scale in our calculations by replacing ttheo = 1eV with texp = 0.4eV

in order to calculate with the experimental value also implies scaling all other quantities

with the same factor 0.4. If finite size effects do not play a role, i.e. the spectrum obtained

by the numerical diagonalization procedure is sufficiently narrow, the change of the energy

scale in the hamiltonian is exactly reproduced in all observables that are given in units of

tbulk. See Fig. A.1 for a standard BdG evalution.

We furthermore evaluated the angle dependence of the supercurrent for a calculation that

uses the experimental energy scale tbulk = 0.4. The main result of this thesis, Fig. 4.3 in
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Figure A.1.: Changing the whole energy scale means scaling tbulk together with Jbulk and
the impurity potentials εi. Then the current (a) scales exactly linearly as it is given in units
of tbulk. To confirm this, the figure shows the standard BdG evaluation for a (310) GB with
Ns = 2 supercells. The abcsissa therefore depicts the changing of all energy quantities, not
only tbulk. Also the absolute value of the gap (b) ∆bulk = Jbulk∆̃bulk scales exactly linearly
while ∆̃bulk = 0.11 remains exactly constant, being a quantity without dimension.
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Figure A.2.: Angle dependence of the critical current for GB samples with electron density
n = 0.8. The impurity potentials have been calculated from the charge fluctuations assuming
a screening length of l ∼ 2.2Å (a) and l ∼ 1.45Å (b). The current is given in units of
tbulk = 0.4 in contrast to all results in Sec. 4 where the value tbulk = 1 was employed.
Depicted is a RMFT calculation using the BdG hamiltonian of Eq. (4.4) and the Gutzwiller
factors as defined in Eq. (4.7). The theoretical values in (a) and (b) are compared to the same
experimental data (iii) taken from Hilgenkamp and Mannhart (2002). This experimental
data is obtained via Eq. (4.11) where the ∆bulk = 0.11 is used for the theoretical value
∆theo. We set Jbulk = 0.8tbulk in order to obtain ∆bulk = 0.11. Lines serve as a guide to the
eye and are calculated as linear fits to the logarithm of the data points. Missing data points
are due to non-convergent solutions.

Sec. 4.4, can be exactly reproduced with such a calculation, except for missing data points

due to a numerically more unstable behavior. In order to provide an example calculated

with the different energy scale and a different outcome, in Fig. A.2(a) and (b) we present

results for changed assumptions of the screening length l ∼ 2.2Å and l ∼ 1.45Å, respectively.

The results can be seen to be very similar to those depicted in Fig. 4.3 except for a constant

shift that is caused by the changed energy scale. Due to the stronger impurity potentials,

for l ∼ 2.2Å the theoretical curve is slightly below the experimental data while for l ∼ 2Å

in Fig. 4.3 it was slightly above. This suggests that the experimental value for the screening

length is close to these values.

For Fig. A.2 we had to use Eq. (4.11) for the value ∆bulk = 0.11 = ∆theo, which is the

lowest possible value that yields a convergent solution of the RMFT calculation. Although

we are able to make a calculation with the experimental value for the hopping, it is not

possible to obtain a self-consistent solution with ∆exp = 0.025. In Eq. (4.11) we made the

assumption, that the separation of the experimental and the theoretical value of the gap

can be approximately accounted for by linearly scaling jc. In the case of tbulk = 0.4 with a

factor ∆exp

∆theo ≈ 0.25 and in the case of tbulk = 1 used in Sec. 4 by a factor of ∆exp

∆theo ≈ 0.09.

Obviously, the effective error is only the one related to the case with ∆exp

∆theo ≈ 0.25 as the
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Figure A.3.: Scaling of the current w.r.t. ∆ for constant tij and εi showing a calculation
without (a) and (b) with Gutzwiller factors. This is for a (520) GB with Ns = 3 supercells
at n = 0.8. All other parameters are chosen as in Fig. 4.3, in particular the energy scale
tbulk = 1. Turquoise fitting curves are linear fits, green fitting curves are quadratic fits.

remaining reduction of the gap is due to an exact change of the energy scale which does not

add to the error.

In Fig. A.3(a) an almost exact linear dependence of jc on ∆ij can be observed for the

standard BdG evaluation. For the RMFT calculation in Fig. A.3(b) a quadratic dependence

is observed. In the region we are interested in, i.e. the interval in between ∆ = 0.025

and ∆ = 0.11, we can not calculate any data points due to numerical limitations. On

the one hand, we could speculate, that the most left data points in Fig. A.3(b) already

assume an almost linear behavior which then justifies our proceeding. On the other hand,

if one extrapolates the quadratic fit, in the interval in between ∆ = 0.025 and ∆ = 0.11, a

linear approximation of the parabola will produce an error, i.e. a wrong estimation of the

corresponding experimental value, of (0.11 − 0.025)2 ≃ 0.007, i.e. of about 24%. Given the

fact, that we do not claim to obtain precise quantitative agreement, this error is completely

acceptable.
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A.2. Phase of the OP

To manually fix the phase of the d-wave gap on either side of the GB yields a physical

phase gradient, as can be seen in Fig. A.4. This does not produce any error, although the

implementation via Peierls phases, mentioned in Sec. 4.3 is a more elegant alternative.
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Figure A.4.: The phase of the order parameter for a (520) and a (610) GB. All parameters
are chosen as in Fig. 4.2.

A.3. Influence of the system size

Finally we briefly show Fig. A.5 in order to demonstrate that the number of Ns = 3 supercells

for a (520) sample is sufficient to eliminate finite size effects. For all samples the number

of super cells is chosen in order to obtain L ≈ 1500 lattice sites leading to similar pictures.

Finite size effects enter an RMFT calculation in the same way as a standard BdG calculation.

Thus, in Fig. A.5, we only present results for a standard BdG calculation.
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Figure A.5.: The dependence of the supercurrent (a) and the absolute value of the gap (b)
on the number of supercells in the calculation. This is for a standard BdG calculation.



B. Comparison to a single impurity

In this chapter, the result of a Gutzwiller evaluation is compared to a standard BdG calcu-

lation for a single impurity.

In Fig. B.1 the d-wave gap ∆ij is plotted for a L = 11 × 11 system at n = 0.8 filling.

The panels on the left depict the result of a standard BdG calculation while on the right the

result of a RMFT calculation is shown. Clearly, a comparison of the behavior of ∆ij reveals

a shorter “healing length” in the RMFT case as compared to the uncorrelated simulation.

This was first stated by Garg et al. (2008).

Figure B.1.: The d-wave gap ∆ij for a L = 11 × 11 system at n = 0.8 filling. The panels
on the left show a calculation of type (i), i.e. a standard BdG evaluation, while the panels
on the right show results of an RMFT calculation (ii). The hamiltonian for this system is
given by Eq. (4.4), with εi = 1δiι and ι the index of a single impurity site in the center of the
array. All other parameters are as follows: t = 1 sets the energy scale, J = 1 and t′ = 0.3.
This calculation was done for Ns = 10× 10 supercells. For the standard BdG calculation (i)
a global renormalization as in Sec. 4.6 was employed.
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Figure B.2.: The density distribution ni for the calculation depicted in Fig. B.1. Left panel:
A standard BdG evaluation. Right panel: A RMFT evaluation. As can be seen from the
figure, both calculations yield almost the same density distribution. can be

In Fig. B.2 we plot the density distribution for the cases of Fig. B.1. Here, in accordance

with the discussions in Sec. 3.3 and Sec. 4.5, we do not observe any qualitative difference.

We already stated that in the GB system, we do not observe the shorter healing length

for the gap ∆ij . We also note that we could not reproduce the phenomenon for negative

impurity potentials (in Fig. B.1 a positive potential on a single site with value εi = t = 1

was used). All calculations found in the literature considering the healing length have up

to now only been performed for positive impurity potentials at which the electron density is

reduced. A single negative impurity potential will increase the electron density and yields a

completely different picture.

In order to analyze the common features of the single impurity and the GB system, we

constructed a GB for which we gradually added more and more generic features: few impurity

potentials, random lattice defects, ordered misalignment and strong impurity potentials.

We clearly obtained a qualitatively different result when studying many strong impurity

potentials, as compared to the artificial case of a single site. We conclude that the study of

single impurities cannot be simply generalized to a strong impurity concentration in extended

areas, such as GBs, and stress that the result of Garg et al. (2008) is to be investigated for

more general situations. This was not achieved in the thesis and remains to be investigated

in future research — the current chapter is only meant to draw attention to it.



C. An effective one-particle hamiltonian

for the t-J-model

First a general mean-field decomposition is motivated and introduced. Then using the vari-

ational principle, an effective one-particle hamiltonian for the t-J-model is derived.

C.1. General Hartree-Fock mean-field decomposition

The notion “mean-field” decomposition refers to a certain approximative evaluation of ex-

pectation values of operators that include more than two c or c† operators (two-particle

observables) — the interaction terms. For the t-J-model, the interaction term is the spin

interaction 〈Si · Sj − 1
4ninj〉.

Let us proceed in the following way: rewrite two c or c† operators1

c1c2 = 〈c1c2〉+ (c1c2 − 〈c1c2〉) (C.1)

where 〈c1c2〉 is called a mean-field — this is just a complex number and can later serve as a

variational parameter. Then one makes the following assumption

〈c1c2c3c4〉 =
〈(
〈c1c2〉+ (c1c2 − 〈c1c2〉)

)(
(〈c3c4〉+ (c3c4 − 〈c3c4〉)

)〉

=
〈
− 〈c1c2〉〈c3c4〉+ 〈c1c2〉c3c4 + c1c2〈c3c4〉+

= small︷ ︸︸ ︷
(c1c2 − 〈c3c4〉)(c3c4 − 〈c3c4〉)

〉

(C.2)

∼ 〈c1c2〉〈c3c4〉 (C.3)

The product of the deviations of the operators pairs from their mean values is supposed to

make only a small contribution to the expectation value. Clearly this approximation can

only be justified by calculating the actual contribution of the fluctuation term. This is in

general not possible such that the approximation is an uncontrolled one. It is nevertheless

employed here. We do this in a heuristic spirit knowing that Hartree-Fock mean-field theory

is very successful in some cases2 and for certain observables.

1From here c1, c2, ... can be either creation or annihilation operators.
2 Already note here that successful theories like BCS make this assumption. This implies that the corre-
sponding mean-field state |BCS〉 =

∏
k
(uk + vkc

†
k↑c

†
−k↓)|vac〉 a priori neglects the fluctuation term. As

〈c†
k↑c

†
−k↓c−k′↑ck′↓〉BCS = 〈c†

k↑c
†
−k↓〉BCS〈c−k′↑ck′↓〉BCS is an exact identity the fluctuation term is exactly

zero in the BCS state.
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The decomposition of Eq. (C.3) can be done in all three ways of pairing the four operators:

〈c1c2c3c4〉 ∼
1

3

(
〈c1c2〉〈c3c4〉 − 〈c1c3〉〈c2c4〉+ 〈c1c4〉〈c2c3〉

)
(C.4)

where for the second term anti-commutation was used to employ the notation of Eq. (C.1).

Depending on how many possible pairings of operators one includes when evaluating expec-

tation values of interaction terms, one obtains expressions depending on different numbers of

mean-fields. It was already mentioned that the mean-fields serve as a variational parameter.

Thus, the best approximation is obtained if all pairing possibilities are employed in order to

work with the maximal number of variational parameters and with that attain the lowest

possible energy expectation value.

C.2. The BdG equations derived from the variational

principle

To explicitly refer to what is needed in this thesis, we solely consider the t-J-model

H = −
∑

(ij)s

tij(c
†
iscjs + h.c.) + J

∑

〈ij〉

(Si · Sj −
1

4
n̂in̂j) (C.5)

where Si = 1
2c

†
isσss′cis′ . Here the no double occupancy condition is not accounted for,

as in our calculations, it is either implemented via the Gutzwiller projection operator or

completely neglected.

C.2.1. Energy expectation value

The interaction contributions can be written as

Si · Sj = SixSjx + SiySjy + SizSjz (C.6)

= Si+Sj− + Si−Sj+ + SizSjz (C.7)

where the single terms are evaluated as

SixSjx + SiySjy =
1

2
(c†i↑ci↓c

†
j↓cj↑ + c†i↓ci↑c

†
j↑cj↓) (C.8a)

SizSjz =
1

4

(
(ni↑nj↑ + ni↓nj↓)− (ni↑nj↓ + ni↓nj↑)

)
(C.8b)

Here and in the following we drop the hat on the operators n̂is for notational simplicity. The

charge density interaction is

1

4
ninj = (ni↑nj↓ + ni↓nj↑) + (ni↑nj↑ + ni↓nj↓) (C.9)
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such that

Si · Sj −
1

4
ninj =

1

2
[(c†i↑ci↓c

†
j↓cj↑ + c†i↓ci↑c

†
j↑cj↓)− (ni↑nj↓ + ni↓nj↑)] (C.10)

Employ now the Hartree-Fock mean-field decoupling scheme introduced in Eq. (C.3). Here

we decouple the expectation value of the spin interaction solely in the one “relevant” field

〈ci↓cj↑〉3 which then reads

〈Si · Sj −
1

4
ninj〉 =

1

2

〈
(c†i↑ci↓c

†
j↓cj↑ + c†i↓ci↑c

†
j↑cj↓)− (c†i↑ci↑c

†
j↓cj↓ + c†i↓ci↓c

†
j↑cj↑)

〉

=
1

2

〈
(c†j↓c

†
i↑ci↓cj↑ + c†j↑c

†
i↓ci↑cj↓)− (c†j↓c

†
i↑ci↑cj↓ + c†j↑c

†
i↓ci↓cj↑)

〉

∼ 1

2
(〈c†j↓c

†
i↑〉〈ci↓cj↑〉+ 〈c†j↑c

†
i↓〉〈ci↑cj↓〉)− (〈c†j↓c

†
i↑〉〈ci↑cj↓〉+ 〈c†j↑c

†
i↓〉〈ci↓cj↑〉)

(C.11)

At this point it is meaningful to define the pair wave function as the symmetrized sum of

the mean-field 〈ci↓cj↑〉

∆̃ij ≡
1

2
(〈ci↓cj↑〉+ 〈cj↓ci↑〉) =

1

2
(〈ci↓cj↑〉 − 〈ci↑cj↓〉) (C.12)

Calculating its absolute square value yields

∆̃∗
ij∆̃ij =

1

4
(〈c†j↑c

†
i↓〉 − 〈c†j↓c

†
i↑〉)(〈ci↓cj↑〉 − 〈ci↑cj↓〉)

=
1

4

(
〈c†j↑c

†
i↓〉〈ci↓cj↑〉 − 〈c†j↑c

†
i↓〉〈ci↑cj↓〉 − 〈c†j↓c

†
i↑〉〈ci↓cj↑〉+ 〈c†j↓c

†
i↑〉〈ci↑cj↓〉

)
(C.13)

Comparing this with the result of Eq. (C.11) shows

〈Si · Sj −
1

4
ninj〉 = −2∆̃∗

ij∆̃ij (C.14)

With this approximation the mean-field expression for the energy expectation value reads

Emf = 〈H〉mf = −
∑

(ij)s

tij(χ̃
∗
ijs + h.c.)− 2J

∑

〈ij〉

∆̃∗
ij∆̃ij (C.15)

where χ̃∗
ijs ≡ 〈c†iscjs〉.

C.2.2. One-particle hamiltonian

Consider now explicitly a variational wave function |ψ0〉. All expectation values used above

and in particular the energy are now taken as evaluated in |ψ0〉. In order to obtain the

best approximation of the ground-state of the system the energy in Eq. (C.15) is minimized

with respect to the free parameters {∆ij} fulfilling certain physical constraints.4 Therefore

3In some cases only one field is relevant and all other possible fields in the decomposition can be neglected.
For example, in a paramagnetic model, the antiferromagnetic order parameter is zero.

4These constraints can be summarized to the constraint that we employ a normalized one-particle wave
function. This leads directly to the Fermi- or the Bose-function for the evaluation of expectation values.
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|ψ0〉 ≡ |ψ0(∆)〉, where ∆ ≡ (. . . ,∆ij , . . . )
T is a vector of length equal to the number of pairs

nearest of neighbors on the lattice. The corresponding stationarity condition, the variation

with respect to the trial wave function, reads

δEmf

δ〈ψ0|
+ E δ(1 − 〈ψ0|ψ0〉)

δ〈ψ0|
= 0 (C.16)

Here the normalization condition 〈ψ0|ψ0〉 = 1 was introduced via the Lagrange multiplier E .
To evaluate Eq. (C.16) we have to take the functional derivative e.g. as in the term

δ∆∗
ij

δ〈ψ0|
=

1

2

δ(〈ψ0|c†i↓c
†
j↑ − c†i↑c

†
j↓|ψ0〉)

δ〈ψ0|
=

1

2
(c†j↑c

†
i↓ − c†j↓c

†
i↑)|ψ0〉 (C.17)

The formal procedure applied in the preceding equation can be justified by explicitly using

the one-particle structure of |ψ0〉. Apart from that it allows an unrestricted functional form

for |ψ0〉. Using this the evaluation of all terms is simple, e.g.

δ(∆∗
ij∆ij)

δ〈ψ0|
= ∆ij

δ∆∗
ij

δ〈ψ0|
+ h.c. = ∆ij(c

†
j↑c

†
i↓ − c†j↓c

†
i↑)|ψ0〉+ h.c. (C.18)

and leads to the evaluated expression for Eq. (C.16)

(
−
∑

(ij)s

tij(c
†
iscjs + h.c.)− J

∑

〈ij〉

(∆ij(c
†
j↑c

†
i↓ − c†j↓c

†
i↑) + h.c.)

)
|ψ0〉 = E|ψ0〉 (C.19)

Clearly, the expression on the left hand side defines the a one particle hamiltonian, such

that in general one can define

Heff ≡ δEmf

δ〈ψ0|
(C.20)

Furthermore, we already know that Eq. (C.20) is equivalent to the BdG equation Eq. (3.6)

and with that we showed the equivalence of the BdG framework and a variational calcula-

tion.5

Finally, to obtain the effective one-particle hamiltonian used in this thesis we only have to

employ another decomposition for the spin interaction. For this we cite Wang et al. (2006)

and give6

〈Si · Sj〉0 = −3

4
(χ̃∗

ijχ̃ij + ∆̃∗
ij∆̃ij) ,

1

4
〈n̂in̂j〉0 =

1

4
(−χ̃∗

ijχ̃ij + ∆̃∗
ij∆̃ij) (C.22)

5Eq. (C.20) can also be obtained by directly employing the decomposition of Eq. (C.1) in the t-J-hamiltonian
of Eq. (C.5) without going through the variational calculation by just dropping the fluctuation and the
scalar term in the operator expression. But this procedure does not clarify, why the energy should be
minimal in a self-consistent solution of the BdG equation.

6In reference Wang et al. (2006) the expression reads

〈Si · Sj〉0 = −mimj −
3

4
(χ̃∗

ij χ̃ij + ∆̃∗
ij∆̃ij) (C.21)

where mi =
1
2
(ni↑ − ni↓). In the whole theses only cases are examined in which mi = 0 such that we can

drop this
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which leads to

Emf = −
∑

(ij)s

tij(χ̃
∗
ijs + h.c.)−

∑

〈ij〉

1
2Jijχ̃

∗
ijχ̃ij −

∑

〈ij〉

Jij∆̃
∗
ij∆̃ij (C.23)

and finally to

HRMFT = −
∑

(ij)s

tijc
†
iscjs + h.c.−

∑

〈ij〉

1
2Jijχ̃

∗
ijc

†
i↑cj↑ + h.c.−

∑

〈ij〉

Jij∆̃ijc
†
j↑c

†
i↓ + h.c. (C.24)

where summations are over pairs of nearest neighbors 〈ij〉 and pairs of nearest and next-

nearest neighbors (ij).

Our justification of the approach is exclusively based on a phenomenological viewpoint:

we know from experience that a system is well described by a “hamiltonian” consisting of

certain fields.7 We can obviously state that the effective hamiltonian does not have anything

to do with the corresponding microscopic hamiltonian that consists only of operators. The

hamiltonian incorporating fields can rather be considered a Hamilton function for a classical

problem, respecting the Fermi- or Bose-statistics and energetical features of the system —

and no quantum correlations at all.

7Take again BCS: the picture of an electron gas of non-interacting pairs of electrons must be a realistic one
taking into account the successfull description of experimental results. Not only that it yields reliable
results, but also BCS is a much more clear description of the phenomen of superconductivity as a hypo-
thetical exact one: If one included the interaction in a mathematically correct way one would end up with
a veritable many-body Hilbert space, where the notion of electron pairs is completely useless being based
on the notion of single particles. We see that in this case, the human-comprehensible, intuitive picture of
electron pairs, is a very good description of nature — providing a physical understanding that would not
be possible with a rigorous quantum mechanical treatment of the problem





D. The super cell method

D.1. Generalization of the Bloch theorem to an arbitrary

elementary cell

We present the form of the Bloch theorem for a lattice with an elementary cell that contains

several lattice sites. Such a lattice is called a super-lattice consisting of Ns super cells, i.e.

Ns elementary cells. The following is based on the second proof of the Bloch theorem in

Ashcroft and Mermin (1976, Ch. 9).

Given a hamiltonian on such a one-dimensional lattice of spacing a with Ns super cells,

L = NsR lattice sites that is periodic in the super cells: H(x + Ra) = H(x) . Let us

further impose periodic boundary conditions for the full lattice (a torus of Ns super cells):

ψ(x+ La) = ψ(x). We can then write H and ψ in terms of their fourier transformations1

H(x) =
∑

K

eiKxH(K) with K ∈ R ≡ {0, 2π
Ra , 2

2π
Ra , ..., (R − 1) 2πRa} (D.1)

ψ(x) =
∑

k

eikxψ(k) with k ∈ BZ ≡ {0, 2πLa , 2 2π
La , ..., (L − 1) 2πLa} (D.2)

The eigenvalue equation (stationary Schroedinger equation) then reads

(
H(x)− E

)
ψ(x) = 0 (D.3)

⇔
∑

kK

ei(K+k)xH(K)ψ(k) − E
∑

k

eikxψ(k) = 0

⇔
∑

kK

eikxH(K)ψ(k −K)− E
∑

k

eikxψ(k) = 0

⇔
∑

k

eikx
(∑

K

H(K)ψ(k −K)− Eψ(k)
)
= 0

⇔
∑

K

H(K)ψ(k −K)− Eψ(k) = 0 (D.4)

The last line shows that for a value of k ∈ BZ all fourier coefficients ψ(k) which differ from

it by K ∈ R are coupled, i.e., the sum of these forms one solution of the eigenvalue problem.

By choosing a second value for k that does not differ from the first one by a vector K, we find

another independent solution, and so on. By inspection of BZ (and remembering L = NsR)

1Note that the restriction to a finite number of wave vectors in the sets R, BZ is easily justified by noting
that x can only take discrete values (multiples of a) on a lattice such that any value of Ka = (n1R+n2)

2π
Ra

,
where n1, n2 ∈ N and n2 < R yields the same phase factor as the value Kb = n2

2π
Ra

both in the calculation
of the coefficents H(Ka) =

1
R

∑
x e

−iKaxH(x) = 1
R

∑
x e

−iKbxH(x) = H(Kb) as in the Fourier expansion
H(x) =

∑
K eiKxH(K) such that any other values as those listed in R are redundant. Analogous for BZ .
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it is clear that we can only find Ns sets of values of k that are independent in the just stated

sense. This leads to a reduction of the Brillouin Zone (the set of wave vectors that provide

independent solutions of the eigenvalue problem) such that all independent solutions that

can be calculated from Eq. (D.4) have the form

ψk(x) :=
∑

K

ei(k+K)xψ(k +K) = eikx
∑

K

eiKxψ(k +K)

with k ∈ BZ∗ ≡ {0, 2πLa , 2 2π
La , ..., (Ns − 1) 2πLa} (D.5)

This is the Bloch theorem for an elementary cell consisting of an arbitrary number of lattice

sites, as obviously: u(x) =
∑

K eiKxψ(k+K) = u(x+R) . Note that the equation Eq. (D.4)

has in general many solutions ψk for one value of k.

The generalization to higher dimensional lattices is trivial when employing the concept of

the reciprocal lattice.

D.2. Fast Fourier transform matrix diagonalization

We consider the case of a hamiltonian with periodicity H(x + Ra) = H(x) as above (one

dimensional lattice of Ns super cells, L = NsR), the eigenfunctions of which can be written

as

ψnk(x) = eikxun(x) where unk(x+Ra) = unk(x)

with k ∈ BZ∗ ≡ {0, 2πLa , 2 2π
La , ..., (Ns − 1) 2πLa} (D.6)

where we introduced a further index n anticipating that there are more solutions to be

classified. Take now the concrete case of a hamiltonian the action of which is defined as:

Hψ(x) =
∑

τ T (x, τ)ψ(x + τ) + V (x)ψ(x), where the term depending on the neighbors τ

of the site x, T (x, τ) and a potential term V (x) have the periodicity of the super cell, i.e.,

T (x+Ra, τ) = T (x, τ), V (x+Ra) = V (x). The hamilton operator can be written in matrix

form as

H ≡ (Hxy)
L−1
x,y=0 with Hxy = δτyT (x, τ) + δxyV (x) (D.7)

when writing the state vector as ψ = (ψ(0), ψ(1), ..., ψ(L − 1))T . With this notation the

eigenvalue equation Eq. (D.3) can be written with Eq. (D.6) in the following way

(H − Enk)




ψnk(0)

ψnk(1)
...

ψnk(L− 1)




= 0 ⇔ (H −Enk)




unk(0)

eikunk(1)
...

eik(L−1)unk(L− 1)




= 0 (D.8)
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Employing the periodicity condition for unk(x) yields

(H − Enk)




ũnk

eikRũnk

...

eik(Ns−1)Rũnk




= 0 where ũnk ≡




unk(0)

eikunk(1)
...

eik(R−1)unk(R− 1)




(D.9)

Let us write down the equations for the Mth supercell, i.e. for x ∈ {MR, ..., (M +1)R− 1},
of the matrix equation:

T (x, τ)eik(M+σ(τ))Rũnk(τ) + (V (x)− Enk)e
ikMRũnk(x) = 0

⇔ T (x, τ)eikσ(τ)Rũnk(τ) + (V (x)− Enk)ũnk(x) = 0 (D.10)

where

σ(τ) =





1 if τ in upper super cell

0 if τ in same super cell

−1 if τ in lower super cell

(D.11)

As in Eq. (D.10) T (x + R, τ) = T (x, τ), V (x + R) = V (x), i.e. the coefficients in the

equation are the same for each super cell (also the function σ(τ) is the same for the whole

lattice). It is therefore sufficient to calculate ũnk via (D.10) (the reduced eigenvalue problem)

to obtain the full eigenvector ψnk.

Let us put this in a form one would use in a program code, such that the procedure

to calculate all L = NsR eigenvalues and vectors of the Hamilton operator is as follows.

Solve the reduced eigenvalue problem Eq. (D.10) and Eq. (D.12) for a fixed value of k by

diagonalizing the matrix2

Hk
reduced ≡ (Hxy)

R−1
x,y=0 with Hxy = δτye

ikσ(τ)RT (x, τ) + δxyV (x) (D.12)

which yields a set of R eigenvalues {E0k, E1k, ..., E(R−1)k} and vectors {ũ0k, ũ1k, ..., ũ(R−1)k}.
The set of R eigenvectors for the wave vector k of the full hamiltonian is then obtained as

ψnk =




ũnk

eikRũnk

...

eik(Ns−1)Rũnk




(D.13)

Repeat the procedure for the next value of k ∈ BZ∗ to obtain the next set of R eigenvalues

and vectors, and so on. This yields finally L = NsR solutions.

The generalization to more than one dimension is straightforward using the concept of

the reciprocal lattice. A derivation of the preceding in a completely different is found in e.g.

Ghosal et al. (2002).

2Note that as k ∈ BZ∗ the phase factor in Eq. (D.10) and Eq. (D.12) reads: eikσ(τ)R = ei2πσ(τ)m/Ns where
m ∈ {0, 1, ..., Ns − 1} (k = m 2π

NsR
) so that in the program one will employ a parametrization in terms of

the integer numbers m instead of the wave vectors k.
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