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Note

This report is a documentation of the author’s research internship with Prof. Marcos Rigol at

Georgetown University, Feb 20 – Mai 20 2010. It consists of the Phys. Rev. A publication [1] and

supplementary material. Sections 1, 3, 4, 5 and 6 are copies of the sections in the publication with

the same name, except for references to the appendix and the correction of errors (see erratum

below). The section 2 and the sections of the appendix are not present in the publication and

provide detailed descriptions of methods and analytical calculations.

Erratum for Ref. [1]

During the production of this report the author (motivated by a remark of B. Sciolla) realized

that two analytic expressions are not correctly given in the publication. None of the errors

change any conclusion drawn in the publication, as well as all figures (and codes) are correct.

• In the analytic expression for the revival time (eq. (13) of the paper) a factor 2 in the

second summand is incorrect. The corrected expression is given by:

trev =

∫ u2

u1

du f(u), where f(u) =
{
d2J2(1− u2)[1− (2γ − u)2]− (H′

0 −Au)2
}− 1

2

and γ = 2n− 1 and H′
0 = −4n(1− n) d J − γA.

• In the case of half filling, the constant A (in the publication always set 1) is missing in the

expression for the upper boundary of the above integral. The correct expression is

u2 =
A

2dJ

(√
1 + 8(dJA )2 − 1

)
.

Abstract

We present a theoretical study of the quantum corrections to the revival time due to finite

tunneling in the collapse and revival of matter wave interference after a quantum quench. We

study hard-core bosons in a superlattice potential and the Bose-Hubbard model by means of

exact numerical approaches and mean-field theory. We consider systems without and with a

trapping potential present. We show that the quantum corrections to the revival time can be

used to accurately determine the value of the hopping parameter in experiments with ultracold

bosons in optical lattices.
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1. Introduction

Collapse and revival oscillations in a Bose-Einstein condensate loaded in an optical lattice were

first experimentally observed in 2002 [2] and since then have been a subject of much theoretical

and experimental interest [3]. This phenomenon is understood as an oscillation between an

initial coherent state and a final non-coherent (collapsed) state in a lattice where, after a quench,

the hopping parameter between sites is negligible. Very recently it has been argued that such

collapse and revival oscillations can be used as a very sensitive probe for effective three-body and

higher interactions [6] by studying the time evolution of the visibility of the interference pattern.

This has been investigated theoretically in Ref. [7]. It was assumed both in experiment and in

theory [6, 7] that the initial state is a coherent state and that after the quench the tunneling

amplitude is negligible, that is, that the systems were in the atomic limit. Following these

assumptions, the time-evolving state is a product of coherent states localized at each lattice site

and one deals with an effective one-site problem.

Our goal in this article is to go beyond the previous analysis and present a full many-body

study of collapse and revival phenomena in one-, two-, and three-dimensional cubic lattices.

We study hard-core bosons in the presence of a superlattice and the Bose-Hubbard model. For

both cases we consider systems without and with a trapping potential present. For the hard-

core case we use exact numerical approaches in one and two dimensions and compare them

with the predictions of a Gutzwiller mean-field theory. We show that the latter is qualitatively

and quantitatively correct when determining the revival time for small hopping amplitudes.

Building on that, we present an analysis for the Bose-Hubbard model that is solely based on the

Gutzwiller mean-field approach. We also provide an analytical solution for the homogeneous

hard-core case.

A previous study [8] considered the effect of a finite hopping on the damping of the collapse and

revival oscillations in a lattice without a confining potential. The quantitative results presented

there applied to an initial coherent state as in the articles mentioned previously. In contrast,

we study the dynamics starting from initial states that are the exact many-body ground state

in some cases and the appropriate Gutzwiller ansatz in the other cases.

We find the functional form of those corrections to the revival time in the atomic limit, and

show that if one knows the values of the superlattice potential for the hard-core case or the

onsite interaction U for the Bose-Hubbard model, such corrections can be used to accurately

determine the tunneling amplitudes in experiments in optical lattices. In the atomic limit, for

the Bose-Hubbard model, the revival time trev is tatomrev = 2π~/U [4,5]. Our general strategy is to

numerically calculate the deviations from this value for 0 < J/U < 1. Given that in experiments

with ultracold gases in optical lattices the hopping parameter J is exponentially sensitive to the

lattice depth, while the onsite repulsion U is only power-law dependent on the lattice depth,

this method of determining J by means of the revival time may be more accurate than the

approaches followed so far. Our results are also relevant to cases in which the tunneling is small

but one is still interested in estimating its value.
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This report is organized as follows. In Sec. 2 the basic methods necessary to gain the results

presented in the rest of the text are described. In Sec. 3, we study the collapse and revival in the

hard-core case in the presence of a superlattice potential. This is done using numerically exact

methods in one and two dimensions. In Sec. 4, we introduce the time-dependent mean-field

approach to the hard-core boson problem and compare its results with numerically exact ones

in order to quantify the predictive power of the mean-field approximation for the revival time.

In addition, we make some general theoretical statements and provide an analytical solution for

the case without the trapping potential. Section 5 is devoted to analyzing the Bose-Hubbard

model in three dimensional systems of soft-core bosons with and without confining potentials

present. Finally, we present our conclusions in Sec. 6.

2. Basic methods

2.1. Numerical exact time-evolution of hard-core bosons in one dimension

In the following we present an exact numerical approach to hard-core bosons (HCBs) in one

dimension (1D) that was introduced by Rigol in Ref. [9]. This approach allows us to calculate

the one particle Green’s function with a numerical cost of L5, L being the system size. Hence, it

allows for calculations of systems that are comparable in size with experimentally realized ones

- that is as much as several thousand lattice sites.

We start with the HCB system Hamiltonian that includes only a kinetic energy term. One

accounts for the infinitely strong on-site repulsion by the prohibition of double occupancy implied

by the operator constraint b̂†2i = b̂2i = 0 for the creation and annihilation operator of the same

site. Next neighbor summation in 1D reduces to the simple form below. J is the hopping

parameter.

HHCB = −J
∑
i

(b†ibi+1+h. c.) , b̂†2i = b̂2i = 0 , [bi, b
†
j ] = δij [bi, bj ] = [b†i , b

†
j ] = 0 . (1)

2.1.1. Jordan-Wigner map on free fermions

The Hamiltonian (1) can be mapped on the equivalent Hamiltonian of free fermions, HF =

−J
∑

i(a
†
iai+1 + h. c.) , {ai, a†i} = δij , {ai, aj} = a†i , a

†
j = 0, using the Jordan-Wigner transfor-

mation [10]:

b†j = a†j

j−1∏
β=1

e−iπa
†
βaβ . (2)

Let us proof this proposition. One first shows that a†i , aj obey the fermionic anti-commutation

rules: We formally introduce for an arbitrary state |ψB〉 of a HCB system the corresponding

state of fermions |ψF〉 with the same occupation numbers (which is possible as the bosonic state

does not contain higher occupation numbers than 1). We further set without loss of generality
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i < j and denote with N0i and Nij the sums
∑

β a
†
βaβ over the sets of lattice sites {1, ..., i− 1},

{i+ 1, ..., j − 1} respectively.

[bi, b
†
j ] = δij ⇒

[ i−1∏
β=1

e−iπa
†
βaβai , a

†
j

j−1∏
γ=1

e−iπa
†
γaγ

]
|ψF〉 = δij ⇒ eiπN0i

[
ai , a

†
je
iπa†iaieiπNij

]
|ψF〉 = δij

⇒
(
ai a

†
je

−iπa†iai − a†je
−iπa†iaiai

)
|ψF〉 = δij ⇒ {ai, a†j} = δij , (3)

where in the second line it was used, that e−iπa
†
iaiai|ψF〉 = −aie−iπa

†
iai |ψF〉 (as site i in |ψF〉 is

either unoccupied or occupied with one particle). As |ψF〉 is arbitrary the last arrow holds true.

Analogously it can be shown that {ai, aj} = {a†i , a
†
j} = 0.

It remains to show that the form of the Hamiltonian is not change by the Jordan-Wigner

map. For this insert (2) in (1):

HHCB = −J
∑
i

(a†i

i−1∏
β=1

e−iπa
†
βaβ

i∏
γ=1

eiπa
†
γaγ

︸ ︷︷ ︸
eiπni =1

ai+1 + h. c.) = HF . (4)

The identity under the brace holds true, because 〈ψF|a†ie−iπni can only yield ni = 0, as double

occupation in 〈ψF| is forbidden.
A last thought has to be given to the boundary conditions. Let’s clear up the case for periodic

ones. For an electron at site 1 the processes to hop from site N by passing the boundary or

performing commutations with all other electrons on the lattice sites in between should be

equivalent. For an even total number of electrons N there is an odd number to commute with

- to make up for this, one adds an additional minus sign to the hopping constant of process

1 → N . For an odd number this does not occur and one can leave everything unchanged.

With this mapping we now possess a tool to easily calculate exact quantities - we no more

deal with a strongly-interacting bosonic system but with a simple non-interacting fermionic one.

This fact makes it eventually possible to trivially extend our analysis to the nonequilibrium case.

2.1.2. Time evolution of free fermions

The state |ΨF〉 of a noninteracting system is a product of single particle states |ψn〉. The real

space representation of a single particle state is a superposition of occupation amplitudes for

each site of the lattice, which leaves us with

|ΨF〉 = |ψ1〉 ⊗ ...⊗ |ψN 〉 , |ψn〉 =
L∑
i=1

a†i Pin |0〉 , (5)

where the coefficients Pin fulfill
∑L

i=1 P
2
in = 1 (such that 〈ψn|

∑L
i=1 ni|ψn〉 = 1). We introduce

the matrix PPP of coefficients (PPPn denotes the vector in the nth column) and the vector of operators

6



aaa† = (a†1, ..., a
†
L) and summarize:

|ΨF〉 =
N∏
n=1

L∑
i=1

(a†iPin)|0〉 =
N∏
n=1

aaa†PPPn|0〉 . (6)

One can now give an easy expression for the action of a quadratic exponential on |ΨF〉 [11].

Proposition. Given the above definitions the following identity holds true for any hermitian

L× L matrix XXX

eaaa
†XaXaXa

N∏
n=1

aaa†PPPn|0〉 =
N∏
n=1

aaa†
(
eXXXPPP

)
n
|0〉 . (7)

Proof. See Ref. [11].

In our case, we use this proposition for eaaa
†XaXaXa ≡

∏j−1
β=1 e

−iπa†βaβ , i.e. the map of the Jordan-

Wigner transformation, and for eaaa
†XaXaXa ≡ eiHFt, i.e. the time evolution propagator of the free

fermionic system. In the latter case the proposition is just a mathematical notation of the

fact that the overall evolution of a non-interacting system is equivalent to the product of the

independently evolving single-particle states.

This allows us to choose a representation of HF in the L-dimensional space of single particle

states |ψn〉 =
∑L

i=1 a
†
i Pin |0〉. With this it is clear that we do not have to perform any calculation

in an
(
L
N

)
-dimensional, i.e. exponentially large, space of a manybody states.

As an example and for comparison with later results, we compute the one-particle density

matrix for non-interacting fermions ρij . First we evaluate

aj |ΨF〉 = aj

N∏
n=1

L∑
β=1

(a†βPβn)|0〉 =
(
Pj1 −

L∑
γ=1

a†γPγ1 aj
) N∏
n=2

L∑
β=1

(a†βPβn)|0〉 (8)

We further note that all expressions of the form below vanish:

〈0|
N∏
m=c

L∑
δ=1

(P †
δmaδ)

L∑
γ=1

(a†γPγ1)︸ ︷︷ ︸
state of (N−c+1) particles

aj

L∏
n=c+1

L∑
β=1

(a†βPβn)|0〉︸ ︷︷ ︸
state of (N−c−1) particles

= 0 , (9)

where further action of operator aj to the right makes the unbalanced situation in terms of

particle numbers worse (see (8)). States with different particle numbers are orthogonal, such

that all terms yield zero.

Application of (8) and (9) to the line below, and from then in a successive way yields the
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result:

ρij = 〈ΨF|a†iaj |ΨF〉

= P †
i1Pj1 + 〈0|

N∏
m=c

L∑
δ=1

(P †
δmaδ) a

†
i

L∑
ε=1

(P †
ε1aε)

L∑
γ=1

(a†γPγ1)︸ ︷︷ ︸
〈ψ1|ψ1〉=1

aj

L∏
n=c+1

L∑
β=1

(a†βPβn)|0〉 (10)

=
∑
n

P †
inPjn (11)

2.1.3. Time evolution of hard-core bosons

To treat HCBs in an effective way we employ the Jordan Wigner transformation and perform the

following formal steps (this proceeding can be found in the brief review [9]). The time evolution

of the Green’s function is:

Gij(t) = 〈ΨB(t)|bib†j |ΨB(t)〉 = 〈ΨF(t)|
i−1∏
δ=1

eiπa
†
δaδ ai a

†
j

j−1∏
ε=1

e−iπa
†
εaε |ΨF(t)〉 (12)

The time evolution of the fermionic state ΨF is trivial following (7)

|ΨF(t)〉 = e−iHFt|ΨF init〉 =
N∏
n=1

aaa†PPPn(t)|0〉 , PPPn(t) = (e−iHFtPPP 0)n (13)

Once it is calculated the action of
∏j−1
ε=1 e

−iπa†εaε on |ΨF(t)〉 in (12) generates only a sign change

on the elements Pβn for β ≤ j − 1. The further action of a†j – the generation of a particle –

corresponds to an addition of one column to PPP (t) with elements Pβ(N+1) = δβj . This map we

denote with PPP → PPP j . Hence, the HCB Green’s function is obtained as

Gij(t) = 〈0|
N+1∏
m=1

L∑
α=1

P iαmaα

N+1∏
n=1

L∑
β=1

a†βP
j
βn|0〉

= det
(
PPP i

†
PPP j

)
, (14)

because

〈0|aα1 ... aαN+1a
†
βN+1

... a†β1 |0〉 = ελ1...λN+1 δα1βλ1
... δαN+1βλN+1

. (15)

We then get the one particle density matrix with

ρij(t) = 〈ΨB(t)|b†ibj |ΨB(t)〉 = Gji(t) + δij(1− 2Gii(t)) , (16)

and the momentum distribution function as

nk(t) =
1

A

∑
jl

e−ik(j−l)ρjl(t) , (17)
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with a constant A (in the homogeneous case we set, as usual, A = L).

We finally calculate the numerical cost for a calculation of a time step, given we already

diagonalized the Hamiltonian in its single particle real space representation (this has to be done

only once at the beginning and costs L3). We have L2 operations for the matrix product in (14)

and L3 for the calculation of the determinant in (14) (using a LR decomposition) – giving us

L5. The code used by the author was observed to scale with an exponent of 4.8 with respect to

the system size, reflecting the L5 result.

2.2. Quantum particles in a harmonic trap

2.2.1. The characteristic density

The Hamiltonian of the Bose-Hubbard model (although the following thoughts will not distin-

guish between bosons and fermions) in a harmonic trap is the following

HHCB = −J
∑
〈ij〉

(b†ibj + h. c.) +
U

2

∑
i

ni(ni − 1) + V
∑
i

r2i ni , (18)

where ri denotes the distance from the minimum of the trap in units of the lattice spacing a. In

one dimension e.g. we have ri = a i where i is the site index with i ∈ [−N
2 ,

N
2 ].

To reduce the number of parameters and to make arguments more clear, we first consider the

case of HCBs in one dimension. In the case without a trap, i.e. again the Hamiltonian (1) it is

obvious that the hopping constant J only sets the energy scale but has no further influence on

the physical properties of the system. One therefore states that the density ρ = N
L completely

determines these physical properties [12].

We now interpret the density as the ratio of the ’required’ and ’available’ space in the 1D

system: ρ = N
L = Na

La , that is the ’confinement’ of the particles in the system (we can use the

expression ’confinement’ as particles repel each other). Applying an harmonic external potential

naturally constitutes a confinement regardless of the number of particles by locating particles

in a neighborhood of the minimum of the trapping potential. Even with only a few particles in

the system, the density on a single site can rise up to 1 and therefore make the system a Mott

insulator - if only the trap is steep enough. The density ρ does of course not account for that

such that one has to find a different characteristic quantity.

In order to find the appropriate length scale measuring the ’available’ space for the particles

in the system we rewrite the 1D HCB Hamiltonian in a dimensionless effective way (i.e. we get

rid of one redundant parameter):

HHCB/J = −
∑
i

(b†ibi+1 + h. c.) +
∑
i

( ri√
J/V

)2
ni . (19)

This notation gives rise to the scale ζ =
√

(J/V ) a that is obviously meaningful: The bigger

the curvature of the trap, the more located are particles; the bigger the hopping parameter, the

less located are particles. Occupation probability is proportional to the energy cost which is

9



proportional to the square of the distance from the minimum of trap - therefore we take the

root of J/V . If we again consider the ’required’ space Na and calculate the ratio with ζ we end

up with the characteristic density of the system [13]:

ρ̃ ≡ N

√
V

J
. (20)

In the case of higher dimensions we have to account for the fact that distances are measured

as the Dth root of the volume when D is the dimension. Of course the ’required’ space is then

a general volume NaD (dependent on the volume per lattice site aD). On the other hand the

argumentation for the length scale of the ’available space’ still holds true such that it can be

given as ζD. The ratio is then

ρ̃D ≡ N

(
V

D J

)D
2

. (21)

Although all argumentation was made for HCBs, it still obviously holds true for a system with

a fixed finite repulsion U – apart from that U enters the Hamiltonian as a second (effective)

parameter that governs the localization of particles.

2.2.2. Example: Expansion of a trapped hard-core boson cloud

At this point we can already give the interesting application of the free expansion of HCBs

using only the so far discussed methods (a brief review is found in [9]). One prepares a system

of trapped bosons in their ground state that is (depending only on the characteristic density)

either a quasi-condensate (quasi-superfluid) or a Mott insulator, and then removes the harmonic

trapping potential in order to let the particle cloud expand. In the first case [12] one finds an

expansion during which the peaked initial momentum distribution of the HCBs approaches that

of fermions in their ground state (Fermi block). However the lowest natural orbital occupation

(i.e. the biggest eigenvalue of the one particle density matrix) rises, which means that the

system remains a quasi condensate at all times and does not loose coherence. In the second

case [14], opposed to that, starting from a flat (Mott insulator) momentum distribution a quasi

condensate with peaks at finite momentum is building up - in three dimensions this phenomenon

of a coherent traveling atom cloud has recently been proposed to be a first proof of principle of

a matter laser [15].

3. Numerically exact results for hard-core bosons in a

superlattice

We first introduce the model Hamiltonian considered to study hard-core bosons in a superlattice.

We also discuss its relation to the interaction quench in the soft-core case that is studied in Sec.

5.
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3.1. Motivation and methods

The hard-core boson Hamiltonian on a superlattice with period 2 in the presence of a harmonic

confining potential can be written as

ĤHCB = −J
∑
〈ij〉

(
b̂†i b̂j +H.c.

)
+A

∑
i

(−1)in̂i + V
∑
i

r2i n̂i , (22)

where the hard-core creation and annihilation operators at site i are denoted by b̂†i and b̂i,

respectively, and the local density operator by n̂i = b̂†i b̂i. Hard-core boson operators satisfy

standard commutation relations for bosons. However, on the same site, they also satisfy the

constraint b̂†2i = b̂2i = 0, which precludes multiple occupancy of the lattice sites. The other

parameters in Eq. (22) are the hopping constant J between nearest-neighbor sites 〈ij〉, the

strength of the superlattice potential A, and the curvature of the harmonic trap V . The distance

from site i to the center of the trap ri is measured in units of the lattice constant a, which we

set to unity. In what follows, we also denote the total number of lattice sites by L and the total

number of particles by N .

The hard-core model on a superlattice is particularly suitable to study collapse and revival

phenomena because in one dimension (1D) it can be exactly solved by means of the Jordan-

Wigner mapping to noninteracting fermions [10]. In equilibrium, these systems were studied

in Ref. [16], where they were shown to exhibit ground state phases that are similar to those of

the Bose-Hubbard model. The nonequilibrium dynamics of hard-core bosons in a superlattice

potential was studied in Ref. [17], where collapse and revival oscillations of the momentum

distribution function were observed.

A quench of the superlattice potential A in Eq. (22) has a similar effect to a quench of U

in the Bose-Hubbard model. From a simple band-structure calculation it follows that in 1D A

opens a gap Γ = 2A in the hard-core boson energy spectrum [16,17],

ε±(k) = ±
√

4J2 cos2(ka) +A2 , (23)

where “+” (“−”) denotes the upper (lower) band. In two (2D) and three (3D) dimensions,

hard-core bosons cannot be mapped to noninteracting fermions. The phase diagrams for the

ground state of such systems were studied in detail in Refs. [18, 19] by various numerical and

analytical approaches, and were shown to be qualitatively similar to the phase diagrams of the

Bose-Hubbard model in 2D and 3D [20–22].

As already noted, in the atomic limit of the Bose-Hubbard model, the revival time after the

interaction quench is given by tatomrev = 2π/U (we set ~ ≡ 1 henceforth); similarly, for hard-core

bosons in a superlattice potential, it follows that tatomrev = π/A [17].

Hence, in this section we take advantage of the fact that the nonequilibrium dynamics of

hard-core bosons in 1D can be exactly solved for large system sizes by means of the approach

presented in Refs. [9], which makes use of the Jordan-Wigner transformation to noninteracting
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fermions [10]. In 2D, due to the reduced Hilbert space (when compared to soft-core bosons), one

can perform full diagonalization calculations for small, but meaningful, periodic systems. All

our exact results for 2D hard-core systems were obtained in 4×4 lattices with periodic boundary

conditions.

The two preceding approaches allow us to make exact predictions for the quantum corrections

due to finite hopping amplitudes to the revival time tatomrev

∆trev = tatomrev − trev, (24)

which in turn will help us gauge the accuracy of the mean-field approach that we use later for

studying the Bose-Hubbard model.

In the latest experimental and theoretical studies [6,7], the main observable under considera-

tion was the visibility of the interference pattern. Here, instead, we focus our attention on the

time evolution of the nk=0 momentum occupation number,

nk=0 =
1

L

∑
ij

〈b̂†i b̂j〉, (25)

which is also measured in experiments.

3.2. Results for hard-core bosons in a periodic potential in 1D and 2D

In all cases for hard-core bosons presented here we consider the following quench. A system is

prepared in a superfluid state with Jini = 1 (which sets our energy scale) and no superlattice

potential. At time t = 0 the superlattice potential A is quenched to a constant value Afin = 1

and the hopping constant J is reduced to several values Jfin < 1 (in the remainder of the text,

the notation Afin ≡ A and Jfin ≡ J is used in all unambiguous cases).

In Fig. 1, we show the time evolution of nk=0 after this quench in (a) a chain and (b) a 4× 4

cluster, both at quarter filling. Results are presented for three different final values of J , where

the atomic limit (J = 0) revival time can be clearly seen to correspond with the prediction

tatomrev = π/A. Two effects of finite final hopping are evident in those plots: first, a clear shift in

the frequency of the oscillations and, second, a damping of the amplitude. In the following, we

restrict our analysis to the period and amplitude of the first revival. In the homogeneous case,

the frequency can be calculated from the revival time. In the presence of a confining potential,

this is in general not possible as the exact revival time can change on long time scales.

The quantum corrections due to finite hopping ∆trev versus J for constant A = 1 are presented

in a log-log plot in Fig. 2(a) for 1D and 2D systems. We find from those plots that the corrections

follow a quadratic behavior for values of J . 0.1. This is depicted by a quadratic fit f(x) = ax2

to data points with J ≤ 0.01. Also evident from those plots is the very weak dependence of ∆trev

on the density both in 1D and 2D. This turns out to be very convenient later when studying

the harmonically trapped systems.

In Fig. 2(b) we consider the damping of the oscillations, which can be characterized by the
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Figure 1: (Color online) Time evolution of nk=0(t) for three final values for the hopping constant,
Jfin = 0, Jfin = 0.3, and Jfin = 0.6, in a system with a superlattice potential in 1D (a)
and 2D (b). These calculations were done in a chain with L = 400 lattice sites in 1D
and in a L = 4 × 4 system in 2D, both at quarter filling. Time is measured in units
of ~/Jini.

amplitude of the first revival nrevk=0 = nk=0(t = trev) subtracted from its value in the atomic

limit: ∆nrevk=0 = natom,rev
k=0 − nrevk=0. For this quantity we find a quartic behavior, as illustrated by

the fits in Fig. 2(b) and a much stronger dependence on the density. The very fast reduction of

the damping with decreasing J makes it a less attractive tool for experimentally probing small

values of J .

We find numerically the scaling of trev with respect to the system parameters J and A to have

the following functional form trev(J,A) ≡ trev(J/A)/A whereas for the damping nrevk=0(J,A) ≡
nrevk=0(J/A); that is, the former depends on the value of A and J/A while the latter is only a

function of the ratio J/A. In the atomic limit, the revival time scales with A: tatomrev (A) = π/A

and therefore the preceding scaling holds also true for ∆trev: ∆trev(t, A) ≡ ∆trev(t/A)/A. In

Sec. 4 we are able to analytically confirm this result for the mean-field approximation. On the

other hand, in the atomic limit, nmax
k=0(A) is independent of A as the system exhibits perfect

revivals so ∆nrevk=0 is only a function of J/A.

3.3. Results for hard-core bosons in a trap in 1D

Experimental systems are in general different from the ones discussed in Sec. 3.2. This is because

a confining potential is required for containing the gas of bosons. The confining potential in

experiments is to a good approximation harmonic, and generates an inhomogeneous density

profile. Given the results shown in Fig. 2(a), where the revival time was shown to depend only

weakly on the density, one would expect the outcome in the presence of a trap not to be strongly

dependent on the confining potential and the total number of particles.
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n=0.25
n=0.5

2D: n=0.125
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n=0.5

Figure 2: (Color online) Quantum corrections to (a) the revival time (∆trev), and (b) the revival
amplitude (∆nrevk=0), vs J . Results are presented for three densities n = 0.125, n = 0.25
and n = 0.5 in 1D and 2D. In (a) a quadratic dependence is observed whereas in (b)
a quartic dependence is present. These behaviors are emphasized by power-law fits
for data points with J ≤ 0.01. The system sizes for 1D are L = 800 for n = 0.125,
and L = 400 for n = 0.25 and n = 0.5, and for 2D L = 4× 4 for all densities. Results
for n > 0.5 trivially follow from the particle-hole symmetry of the model. No data
are presented for n = 0.125 in (b) because only two particles are present in the 4× 4
cluster and no damping occurs.

Up to small corrections, the preceding turns out to be the case for the changes induced in

the revival time by a finite hopping. However, as shown in Fig. 3(a), if one quenches J and A

keeping constant the trapping potential, then a very high damping rate can be seen even in the

atomic limit. Hence, measurements at a constant curvature of the trap are not the best way

to proceed in trapped systems. They mix the effects of the trapping potential and the finite

hopping in the outcome. In fact, even the quadratic behavior obvious in the homogeneous case

(Fig. 2) becomes obscured in the trap if the confining potential is kept the same from the initial

state.

In previous work in equilibrium it has been argued that the correct way to define the thermo-

dynamic limit for a trapped system is by keeping constant the so-called characteristic density

ρ̃ = N [V/(dJ)]
d
2 , where d is the dimensionality of the system (see, e.g., Ref. [23]). This is

equivalent to what is done in homogeneous systems when one keeps constant the density N/L.

Since in Sec. 3.2 all quenches were performed keeping constant N/L, we have studied quenches

in the trap in which the characteristic density is kept constant; that is, one needs to reduce
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Figure 3: (Color online) Time evolution of nk=0(t) in a trap after a quench with (a) constant
curvature V = 10−4, (b) constant characteristic density ρ̃ = 1.0, and (c) turning off
the trap (Vfin = 0), all for the same initial state. In text (b) and (c) are referred to
as quench type (i) and (ii), respectively. These calculations were done for a system
with L = 400 and N = 100. To keep the characteristic density constant during the
quench we changed Vini = 10−4 → Vfin = 0 for J = 0, Vini = 10−4 → Vfin = 3 × 10−5

for J = 0.3 and Vini = 10−4 → Vfin = 6× 10−5 for J = 0.6.

the trapping potential by the same amount that the hopping parameter is reduced. We denote

this scenario quench type (i). Another way of reproducing the homogeneous results that comes

to mind is to remove the trapping potential concurrently with the superlattice quench and ob-

serve oscillations which then take place in a homogeneous potential. This scenario is denoted

quench type (ii). Within the second approach, one realizes that the gas starts expanding after

the quench. However, if the considered hopping parameters and revival times are sufficiently

small, this will not constitute a problem. Results for the dynamics of these cases are shown in

Figs. 3(b) and 3(c). In contrast to the quench that keeps constant the curvature of the trap we

now observe that the time evolution of nk=0 is very similar to the one in homogeneous systems

depicted in Fig. 1.

For both quench scenarios (i) and (ii), we find a quadratic behavior for ∆trev, which is similar

to what was shown in Fig. 2 for homogeneous systems. Interestingly this behavior is, as depicted

in Fig. 4(a), practically independent of the quench type and the characteristic density of the

initial state. We note that for ρ̃ = 3.0 the initial state has an insulating (n = 1) domain in the

center of the trap, while for the other characteristic densities the system is purely superfluid. In

1D, the insulator appears in the center of the trap when ρ̃ ∼ 2.6− 2.7 [9]. The independence of

the asymptotic behavior of ∆trev on the initial state suggests that by measuring the correction

to the revival time due to the finite value of J in experiments, it is possible to determine J if

one knows A. The same can be said for systems without a trap.
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Figure 4: (Color online) Quantum corrections to (a) the revival time (∆trev), and (b) the revival
amplitude (∆nrevk=0) vs J for Afin = 1, both for the quench scenarios (i) keeping the
characteristic density constant, and (ii) turning off the trap. Results are presented
for three different initial values of the characteristic density ρ̃ = 1.0, ρ̃ = 2.0, and
ρ̃ = 3.0, which correspond to curvatures Vini = 4.44 × 10−5, Vini = 1.78 × 10−4, and
Vini = 4 × 10−4, respectively; the system sizes are L = 500, L = 400, L = 300, with
N = 150 in all cases. Note that ρ̃ = 3.0 already has a Mott-insulating region in the
center of the trap, while ρ̃ = 1.0 and ρ̃ = 2.0 are entirely superfluid. The quadratic
and quartic fits in (a) and (b) were done for points with J ≤ 0.01.

On the other hand, as shown in Fig. 4(b), ∆nrevk=0 reveals a strong dependence on the quench

type and the initial density. For scenario (i), we obtain a quadratic behavior for pure superfluid

initial states (ρ̃ = 1.0 and ρ̃ = 2.0), while for the one having a Mott insulating domain (ρ̃ = 3.0)

a constant damping rate is always present for J < 1. For quench type (ii), the damping behaves

completely differently and shows the quartic behavior observed in the homogeneous case. With

respect to the aim to simulate the homogeneous case, this result indicates that the fact that the

density profile remains unchanged during the time evolution under scenario (i) is less important

than the fact that the potential is homogeneous after quench (ii).
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4. Mean-field approach

Within the mean-field approximation, we can extend our analysis to consider the more experi-

mentally relevant Bose-Hubbard model:

ĤSCB = −J
∑
〈ij〉

(â†i âj +H. c.) +
U

2

∑
i

n̂i(n̂i − 1) +
∑
i

n̂iV r
2
i , (26)

where [âi, â
†
j ] = δij and [âi, âj ] = [â†i , â

†
j ] = 0, as usual for bosons. The on-site interaction energy

is denoted by U .

The mean-field theory that we employ is based on the restriction of the wave function to the

Gutzwiller-type product state,

|ΨMF〉 =
L∏
i=1

nc∑
n=0

αin|n〉i , (27)

where nc → ∞ for thermodynamic systems, |n〉i denotes a single-site Fock state for lattice site

i and the complex coefficients αin allow for a time dependence. For all numerical calculations,

a finite cutoff nc is taken.

The mean-field ground state in equilibrium is found by minimization of the energy expectation

value,

〈ΨMF|ĤSCB − µN̂ |ΨMF〉, (28)

where µ is the chemical potential and N̂ counts the total number of particles. Hence, from

here on we work on the grand-canonical ensemble. To find the time-evolution of the mean-field

approximated system, we employ the time-dependent variational principle [24] that minimizes

the expression

〈ΨMF|i∂t − ĤSCB + µN̂ |ΨMF〉 , (29)

and yields the following set of differential equations (for the derivation see appendix A):

iα̇in = −J
∑
〈j〉i

(√
n+ 1αi(n+1)Φ

∗
j +

√
nαi(n−1)Φj

)
+ αin n

[
U

2
(n− 1) + V r2i − µ

]
. (30)

Here Φj = 〈aj〉 =
∑nc

n=1

√
nα∗

j(n−1)αjn, αi(−1) = αi(nc+1) = 0, and
∑

〈j〉i denotes summation

over all j that are nearest neighbors of i. This is a set of L× nc equations. The time evolution

described by Eq. (30) preserves normalization and the total particle number N . We solve the

system numerically using a fourth-order Runge-Kutta method. Self-consistency is guaranteed

by monitoring the total energy, particle number, and normalization.

At this point it is important to stress that this mean-field approach is in principle an uncon-

trolled approximation. We gauge its validity against our exact results in Sec. 4.2. Before doing

so, we present an instructive analytical solution for the equations introduced previously in the

hard-core limit and for a periodic potential (V = 0).
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4.1. Analytical mean-field solution for hard-core bosons in a periodic

potential

In the case of hard-core bosons, it is possible to reduce the number of equations considerably

and employ a parametrization for the αin in Eq. (30) that preserves normalization and deals

with real variables – this is due to the equivalence of hard-core bosons to s = 1/2 spins, which

leads to the following ansatz for the Gutzwiller wave function [25]:

|ΨHCB〉 =
L∏
i=1

eiχi

(
sin

θi
2
+ cos

θi
2
eiφia†i

)
|0〉 . (31)

If there is no trap in the system (V = 0) it is possible to use translational invariance to

simplify the equations (30), in which in the hard-core limit we again employ the superlattice

quench introduced before. This leads to a formal replacement of U(n−1)/2 by A in (30). As all

sites with the same potential must have the same properties and the system’s wavefunction is a

product of single-site states, the L-site system can be reduced to an effective two-site problem

(for two on-site potentials µ1/2 = µ±A) independent of the dimension. Then the ansatz Eq. (31)

yields the following form of Eq. (30) (see appendix B):

θ̇1 = −2 d J sin θ2 sinφ , (32a)

θ̇2 = 2 d J sin θ1 sinφ , (32b)

φ̇ = 2A− 2 d J(sin θ2 cot θ1 − sin θ1 cot θ2) cosφ , (32c)

where φ ≡ φ1−φ2. Here it can be seen that dimensionality enters the equations only by a simple

rescaling of the hopping parameter: J → d J .

Also, the argument of translational invariance allows one to find a simple expression for nk=0:

nk=0 = n+ 1
4 sin θ1 sin θ2 cosφ . (33)

Figure 5 depicts the time evolution of nk=0 for the same systems for which the exact solution

was presented in Fig. 2. One can clearly see that the mean-field and exact results show a similar

shift of the frequency. However, the mean-field solutions exhibit no damping, and hence they

are qualitatively incorrect for that quantity.

At this point it is instructive to extract the result for the atomic limit: for J = 0, Eq. (32)

has the trivial solution φ(t) = 2A t+ φ(0) and θ1/2 constant. Insertion of this result in Eq. (33)

immediately reveals the revival time tatomrev = π/A.

Obtaining the solution of the system of Eqs. (32) for finite J is possible by treating them like

a classical system (see appendix B). Identification of Hamilton functions and the observation of
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Figure 5: (Color online) Plot of the time evolution of hard-core bosons in a periodic potential
in the mean-field approximation for 1D (a) and 2D (b) after a superlattice quench
Aini = 0 → Afin = 1 for a system at quarter filling. This is to be compared with the
exact results in Fig. 1, where exactly the same system parameters were used.

its trajectories leads to an analytical expression for the period of nk=0:

trev =

∫ u2

u1

du f(u), where (34)

f(u) =
{
d2J2(1− u2)[1− (2γ − u)2]− (H′

0 −Au)2
}− 1

2

where γ = 2n − 1 and H′
0 = −4n(1 − n) d J − γA. A closed expression for the preceding

integral exists. However, it is cumbersome and does not provide any apparent information on

the functional form of trev as it depends on the elliptic integral of the first kind. The integral

limits u1 and u2 are the solutions of 1/f(u) = 0 that lie within [−1, 1]. This requires solving the

root of a polynomial of fourth order, which can also be done analytically. The lower boundary

u1 is given by a simple expression: u1 = γ. In the case of half filling, also the upper boundary

is given by a simple expression: u2 =
A
2dJ

(√
1 + 8d2J2/A2 − 1

)
.

In Fig. 6, we plot the analytic solution for different dimensions at quarter filling. As mentioned

before, dimensionality in the mean-field picture is captured by a simple rescaling of J → d J .

For comparison, we depict numerical solutions of Eq. (30) as points in the plot. The latter are

required for studying the inhomogeneous trapped hard-core boson case and soft-core bosons, for

which no analytic solutions are available.

The analytic expression (34) allows us to confirm the numerical finding for the scaling relations

of trev and nrevk=0 with respect to the parameters A and J . The proposed scaling for the revival

time trev(J,A) ≡ trev(J/A)/A does obviously hold for the integrand f(u) in Eq. (34). The fact

that for the integration limits one has u1/2(J,A) ≡ u1/2(J/A), proves the proposition for the

mean-field case.
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Figure 6: (Color online) Plot of the revival time ∆trev = tatomrev − trev for a system of hard-core
bosons in a periodic potential and a superlattice quench Aini = 0 → Afin = 1. trev is
given by the analytic solution Eq. (34). Depicted are results for 1D, 2D, and 3D. The
data points are numerical solutions of the set of Eqs. (30).

Furthermore, the evaluation of Eq. (33) leads to the expression

nk=0 = n− 1
4dJ (H

′
0 +A cos θ1) , (35)

where one can see, (i) that no damping of nk=0 occurs within the mean-field approximation in

the hard-core limit and (ii) that nk=0 only depends on J/A as found for the numerical solution.

We note also that for the case of half filling and d J = 1, Eq. (34) yields trev → ∞, reflecting

the fact that the mean-field equations of motion do not predict any oscillations in this case –

in contrast to the exact solution. With the absence of damping and the last observation, there

are already two deficiencies of the mean-field approximation that we need to keep in mind for

the analysis that follows – this makes the comparison to the exact solution an essential duty to

ensure one has an idea of the limits of the validity of the mean-field results presented in Sec. 5.

4.2. Exact vs mean-field results

In equilibrium, a detailed comparison between the predictions of the mean-field theory intro-

duced before and exact quantum Monte Carlo simulations for the ground state of hard-core

bosons in the presence of a superlattice potential was presented in Refs. [18,19]. The Gutzwiller

approach was found to correctly predict the two phases present in the ground state of this model,

namely, a superfluid phase for all fillings but n = 0, 1/2, and 1 and for n = 1/2 below a critical

value of A/J and a Mott insulator (a charge density wave) for n = 1/2 above a critical value

of A/J . However, Gutzwiller mean-field theory was shown to provide a poor estimate of the

critical value of A/J for the superfluid-Mott-insulator transition. It overestimated it by around

100% in 2D and a 50% in 3D.

As shown in the previous section, after the quench in the periodic system, the mean-field

solution does not exhibit any damping for the amplitude of the oscillation whereas in the exact
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Figure 7: (Color online) Comparison of the mean-field approximation and the exact solution for
1D (a, c), and 2D (b, d). In (a) and (b), we plot the error introduced in (36) on a
linear-log scale for the systems presented in Fig. 2. In (c) and (d), we again show the
results presented in Fig. 2 but this time on a linear scale together with the mean-field
results, where the latter are drawn as lines and were calculated via the analytical
solution (34).

solution there obviously is damping. For this reason, we do not study the damping any further.

In the remainder of the article we therefore focus on the predictions of mean-field theory for the

corrections to the revival time.

In order to be more quantitative, we define the relative deviation of the mean-field approxi-

mation from the exact solution by

ε(J) =
∆texrev(J)−∆tmf

rev(J)

∆texrev(J)
(36)

where ∆texrev(J) and ∆tmf
rev(J) are the corrections to the revival time due to a finite value of J

for the exact and mean-field solutions, respectively.

In Figs. 7(a) and 7(b), we plot ε(J) in a linear-log scale vs J . That figure shows an almost

constant error over two decades (10−3 . J . 10−1). For J . 10−3 rounding-off errors set in as

one starts dealing with numbers ∼ 10−10; that is, the deviations seen in that region are not to

be considered any further. The absolute value in the constant part of the deviation is around

16% for 1D (a) and 11% for 2D (b) for n = 0.125 and n = 0.25. At half filling, interestingly,

the deviation is yet much smaller. In all cases, it is obvious that the mean-field approximation

21



describes the 2D system better than the 1D case, even though the system size in 1D is one order

of magnitude larger than in 2D and mean-field is expected to be more accurate as the system

size is increased.

In Figs. 7(c) and 7(d), we present the same results as in Fig. 2 and compare them to the

mean-field predictions, but this time in a linear scale. This scale emphasizes the differences

between the mean-field results and the exact ones for values of J close to A = 1. Once again,

it is obvious that the mean-field approximation works better in 2D than in 1D, and that it

becomes a very good approximation of the exact results for n = 0.125 and n = 0.25. We

further note the already-mentioned case of dJ = 1, which does not yield any revival in the

mean-field approximation and therefore ∆trev → ∞ as the figures suggests. Interestingly, there

is a corresponding anomaly in the exact solution in 2D: there, in a neighborhood of J = 0.5,

the exact solution does not produce a symmetric peak after the first revival oscillation, which

makes it meaningless to determine a value for the revival time – therefore these data points

are missing. Finally, Figs. 7(a) and (b) show that at half filling mean-field theory provides the

most accurate results for the quadratic region of small values of J , whereas it provides the worse

results for large values of J , as seen in (c) and (d).
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Figure 8: (Color online) Plots of the error (36) for the 1D trapped case presented in Fig. 4 for:
(a) quench type (i) keeping the characteristic density constant and (b) quench type
(ii) turning off the trap, both presented on a linear-log scale.

Results for ε(J) in the 1D trapped case are presented in Fig. 8 for the two types of quenches

introduced in the previous section: (i) the scenario of a constant characteristic density and (ii)

switching off the trapping potential. The behavior is qualitatively the same as just discussed for

the homogeneous case of Fig. 7(a). Quantitatively, we find an error ∼ 5%, which is in between

the values for low and half filling in Fig. 7(a), and is similar for both quench types. Such an

intermediate value is expected because the trap causes a density profile with different densities

in different regions of the trap.

For the description of experiments, which are of more interest in 3D trapped geometries and

very large system sizes, one can expect much smaller errors than the ones in Fig. 8. Therefore,

we conclude that the shift of the revival time due to a finite hopping is correctly captured not

only qualitatively but also quantitatively by the mean-field approximation described here. This

is an interesting finding considering that, in contrast, the description of the evolution of the
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amplitude in terms of the mean-field approximation is incorrect even at the qualitative level.

5. Results for soft-core bosons

In Refs. [3, 26] it has already been shown that ultracold bosonic gases in optical lattices can be

well described by the bosonic Hubbard model (26). In light of the recent results in Refs. [6, 7]

mentioned in the introduction, we note that the interaction constant U and the hopping ampli-

tude J in the Hamiltonian (26) are the effective two-body interaction and one-body hopping,

respectively, whose origin is not under discussion here. They may be obtained after multi-orbital

renormalization effects are taken into account. Multi-orbital effects may also generate effective

higher-body interactions that translate into additional frequencies during the collapse and re-

vival of the matter-wave interference but are not considered here. These effects can be reduced

by properly engineering the initial state. We focus on the effect that a finite effective hopping

J has on the fist revival of the matter wave.

Collapse and revival oscillations like the ones observed experimentally in Refs. [2,6] have been

reproduced in 1D bosonic [27] and fermionic [28] systems by means of numerically exact time-

dependent renormalization group techniques. Here we use mean-field theory to study 3D bosonic

systems theoretically. Following the results of the previous section, we expect the mean-field

predictions for the tunneling-induced correction of the revival time of the value in the atomic

limit ∆trev to be close to the exact results.

We proceed in the way introduced in the preceding section. For soft-core bosons, we solve the

equations (30) for a cutoff of nc = 7 numerically. This cutoff ensures convergence with respect

to the energy expectation value and the momentum distribution, and was successfully employed

in Ref. [29] to study the superfluid-Mott-insulator transition. Initially, the system is prepared

in the Gutzwiller mean-field ground state of the trapped system at an intermediate interaction

Uini = 6Jini (Jini = 1 sets our energy scale), which ensures the validity of a one-band model in

experiments while the system is still far from the transition to the Mott insulator. Within the

mean-field approximation (U/J)crit = 34.8 (for six nearest neighbors) [20,30,31]. At time t = 0,

the on-site interaction is doubled to Ufin = 12 and we investigate the collapse and revivals for

several values of Jfin < 1 (where, as in the section about hard-core bosons, the notation Ufin ≡ U

and Jfin ≡ J is used in all unambiguous cases).

Figure 9 depicts the collapse and revival oscillations for the homogeneous case. These pre-

dictions, within mean-field theory, correspond to the solution of a single site problem. They

clearly exhibit a different functional form when compared to the ones for hard-core bosons in a

superlattice potential Fig. 2. Also, not only a shift in the revival time is present but additionally

a damping of the amplitude can be observed. We do not consider this damping effect, as we

cannot make any statement about the validity of the mean-field approximation for this quantity

(see Sec. 4). We note again that the revival time for the interaction quench in the atomic limit

is given by trev = 2π/U .

In Fig. 10, we show ∆trev for several densities in the homogeneous case. We observe a linear
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Figure 9: (Color online) Dynamics of the zero momentum peak nk=0 vs time t for a system
with homogeneous potential and density n = 1.5. Time is measured in units of ~/Jini.
These results are derived from the mean-field solution of the time evolution (30) for
the Bose-Hubbard model after an interaction quench from Uini = 6 to Ufin = 12.
Several final values of the hopping constant J are depicted.

relation emphasized by the fits for data points with J ≤ 0.01 in the figure. Since soft-core bosons

are not subject to particle-hole symmetry, the behavior with increasing density is different from

the one observed for hard-core bosons in Fig. 2. The smallest deviation from the atomic limit

is no longer reached at half filling; instead, for soft-core bosons we find that it appears for

a density n ∼ 0.75. Except for densities around this value, ∆trev is not strongly dependent

on the density. With respect to the dependence of ∆trev on both parameters J and U , we

note that the same scaling as in the hard-core case (with A and U interchanged) holds true:

trev(J, U) ≡ trev(J/U)/U .
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Figure 10: (Color online) Plot of ∆trev vs J for soft-core bosons in a homogeneous system and
different densities after an interaction quench from Uini = 6 to Ufin = 12. This is
done for a single-site system, as the homogeneous result is independent of the system
size in the mean-field approximation. Note that the results for different densities lie
very close to each other. The linear fits are done for data points with J ≤ 0.01.

The calculations for the trapped case are more demanding computationally. This is because

translational invariance is broken and one has to deal with all the lattice sites in the system.
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The results reported here are obtained for a lattice with L = 30 × 30 × 30 = 27000 sites with

N = 1000 up to N = 11000. As before, finite size effects for our observables of interest are

extremely small. As a matter of fact, we found that it would be difficult to distinguish the

results reported here from those of a L = 103 = 1000 system. Again, results are presented for

the two quench scenarios analyzed in detail in Sec. 3.3 for hard-core bosons.
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Figure 11: (Color online) Plot of the time evolution of the momentum peak nk=0 for ∼ 11000
soft-core bosons in a lattice with L = 30× 30× 30 sites for: (a) quench scenario (i),
and (b) quench scenario (ii) (see text). The initial state has a characteristic density
of ρ̃ = 39.8 and an on-site energy Uini = 6. At time t = 0 the interaction is quenched
to Ufin = 12 and the curvature of the trap is modified according to (i) and (ii).

Results for the time evolution of nk=0 in the harmonic trap are shown in Fig. 11 for an

initial state with characteristic density ρ̃ = 39.8 and the two different quench types: (i) keeping

constant the characteristic density and (ii) turning of the trap. Here, we observe an effect

that is qualitatively different from the the one seen in the hard-core limit (Fig. 3) and the

homogeneous soft-core case, namely, the revival time in the case with finite hopping exceeds

the atomic value [Fig. 11(a)]. This effect is only observed in the quench scenario (i) for high

characteristic densities. For quench type (ii) the effect is not present for any density [Fig. 11(b)].

In Fig. 12, ∆trev is plotted for several values of the characteristic density of the initial state.

In Fig. 12(a), results are shown for quench type (i). Note that we account for the fact that the

revival time exceeds the atomic limit for high densities by plotting the absolute value of ∆trev;

in particular, ρ̃ = 23.8 and ρ̃ = 39.8 yield a negative value of ∆trev. The strong dependence of

the results on the characteristic density of the initial system, or equivalently, the initial density

in the center of the trap, makes this scenario unsuitable for experimentally probing the values of

J after the quench. The experimental uncertainty of the filling in the center of the trap would
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Figure 12: (Color online) Quantum corrections to the revival time (∆trev) vs J for the scenarios:
(a) keeping the characteristic density constant, and (b) turning of the trap; and an
interaction quench Uini = 6 → Ufin = 12. Results are presented for five different
initial values of the characteristic density – ρ̃ = 0.6, ρ̃ = 3.1, ρ̃ = 10.6, ρ̃ = 23.8, and
ρ̃ = 39.8 – that correspond to the following values of the density in the middle of
the trap: ncenter ∼ 0.5, ncenter ∼ 1.0, ncenter ∼ 1.5, ncenter ∼ 2.0 and ncenter ∼ 2.5.
Note that in (a) ∆trev has a negative sign for ρ̃ = 23.8 and ρ̃ = 39.8; therefore, the
absolute value is depicted.

lead to a large uncertainty in determining J .

Scenario (ii) seems to be a good candidate for the latter goal. As depicted in Fig. 12(b), for

characteristic densities that are not too small (ρ̃ & 10) i.e. for densities in the center of the trap

that are ncenter & 1.5, we observe a weak dependence of the revival time on the characteristic

density of the initial state. This is usually fulfilled in experiments like [2]. We also note that the

relative deviation ∆t′rev = ∆trev/t
atom
rev is only one order of magnitude smaller than the normalized

hopping parameter J/U , due to the linearity of the relation and a prefactor ∼ 0.1. This shows

that the described effect is not small and one should be able to measure it in experiments.

Finally, we should mention that we also performed calculations for different values of the

interaction constant U before and after the quench. They all exhibited a similar qualitative

behavior as depicted in Fig. 12. We therefore stress that our results do not depend on a particular

value of U but represent a general behavior that can be reproduced with experimentally relevant
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parameters. By comparing experimental results and calculations within mean-field theory, plus

using the expected experimental values for U , one could then use experimentally measured values

of ∆trev to determine the final value of J .

6. Conclusion

We have presented a detailed study of the dependence of collapse and revival properties of

the matter-wave interference in lattice boson models on a finite tunneling amplitude after an

interaction quench.

We first studied quenches of hard-core bosons on a superlattice potential. For those systems,

we presented exact numerical results in 1D and 2D, and compared them with the approximated

mean-field solution. Both approaches exhibited the same functional form of the correction to the

revival time produced by finite hopping parameters after the quench, with a leading behavior

∼ t2/A3. The mean-field results were also shown to have, as expected, smaller errors in 2D

as compared to 1D. Since the largest errors for homogeneous 2D systems were ∼ 10% and for

trapped 1D systems ∼ 5% (in contrast to ∼ 17% for the 1D homogeneous case), we expect

that in 3D trapped systems, mean-field theory should provide relatively accurate results for the

corrections to the revival time.

We then studied interaction quenches in the Bose-Hubbard model in 3D. In this case, our

analysis was solely based on the Gutzwiller mean-field theory. We showed that for soft-core

bosons the corrections to the revival time in the atomic limit, due to finite values of J after the

quench, are ∼ J/U2. This is an effect that could be measured experimentally. Given the weak

dependence of the correction on the initial density profile, provided the density in the center

of the trap is greater than n = 1.5, we have proposed that the corrections to the revival time

measured experimentally could be used to determine the actual value of J after the quench. The

only input one would need is the experimental value of U and the mean-field predictions from

calculations similar to the ones presented here.
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Appendix

A. Derivation of the “Jaksch Equations”

The Hamiltonian (26) can be transformed as follows

ĤSCB = −J
∑
〈ij〉

(â†i âj +H. c.) + U
2

∑
i

n̂i(n̂i − 1) +
∑
i

n̂iVi

= −J
∑
i

∑
〈j〉i

â†i âj +
U
2

∑
i

n̂i(n̂i − 1) +
∑
i

n̂iVi

=
∑
i

(
− J

∑
〈j〉i

â†i âj + n̂i
(
U
2 (n̂i − 1) + Vi

))
, (37)

where Vi is a local potential and the sum
∑

〈j〉i denotes summation over a all nearest neighbors

j of site i.

First we want to minimize the energy expectation value 〈ΨMF|ĤSCB − µN̂ |ΨMF〉 with the

Gutzwiller product state |ΨMF〉 =
∏L
i=1

∑nc
n=0 αin|n〉i.

For this consider the action of the hopping operator â†i âj on |ΨMF〉 for i 6= j:

â†i âj

L∏
i=1

nc∑
n=0

αin|n〉i

=
( nc−1∑
n=0

αin
√
n+ 1|n+ 1〉i

)( nc∑
n=1

αjn
√
n|n− 1〉j

) ∏
l 6=i,j

nc∑
n=0

αln|n〉l

=
( nc∑
n=1

αi(n−1)

√
n|n〉i

)( nc−1∑
n=0

αj(n+1)

√
n+ 1|n〉j

) ∏
l 6=ij

nc∑
n=0

αln|n〉l

Which gives for the evaluation of the action of ĤSCB:

(
ĤSCB − µN̂

)
|ΨMF〉 =

∑
i

{
− J

∑
〈j〉i

( nc∑
n=1

αi(n−1)

√
n|n〉i

)( nc−1∑
n=0

αj(n+1)

√
n+ 1|n〉j

)

+
( nc∑
n=0

n
(
U
2 (n− 1) + Vi − µ

)
αin|n〉i

)( nc∑
n=0

αjn|n〉j
)} ∏

l 6=ij

nc∑
n=0

αln|n〉l

(38)
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and therefore for 〈ΨMF|ĤSCB − µN̂ |ΨMF〉

〈ΨMF|ĤSCB − µN̂ |ΨMF〉 =
∑
i

{
− J

∑
〈j〉i

( nc∑
n=1

√
nαi(n−1)α

∗
in

)
︸ ︷︷ ︸

≡Φ∗
i

( nc−1∑
n=0

√
n+ 1α∗

jnαj(n+1)

)
︸ ︷︷ ︸

≡Φj

+
( nc∑
n=0

n
(
U
2 (n− 1) + Vi − µ

)
|αin|2

)
(39)

=
∑
i

{
− J

∑
〈j〉i

Φ∗
iΦj −

( nc∑
n=0

n(U2 (n− 1)− µi)|αin|2
)}

(40)

where µi = µ− Vi.

Making this stationary requires differentiating which is easily done if expression (39) is em-

ployed and the appearance of the variable α∗
in in the sum over nearest neighbors is carefully

counted:

∂α∗
in
〈ΨMF|ĤSCB − µN̂ |ΨMF〉 = 0

⇔ −J
∑
〈j〉i

(√
nαi(n−1)Φj +

√
n+ 1αi(n+1)Φ

∗
j

)
+ n

(
U
2 (n− 1) + Vi − µ

)
αin (41)

Due to hermiticity the partial derivation with respect to the complex conjugate variable yields

the same result.

We further need

i∂t

L∏
i=1

nc∑
n=0

αin|n〉i = i
∑
i

nc∑
n=0

α̇in|n〉i
∏
l 6=i

nc∑
n=0

˙αln|n〉l

⇒ 〈ΨMF|i∂t|ΨMF〉 = i
∑
i

nc∑
n=0

α∗
inα̇in . (42)

Following the so called time-dependent variational principle [24] we stationarize the Schroedinger

equation: with the expressions (41) and (42) the result follows immediately:

∂α∗
in
〈ΨMF|i∂t − ĤSCB + µN̂ |ΨMF〉 = 0

⇔ iαin = −J
∑
〈j〉i

(√
nαi(n−1)Φj +

√
n+ 1αi(n+1)Φ

∗
j

)
+ n

(
U
2 (n− 1) + Vi − µ

)
αin . (43)

This is the set of equations (30) we call “Jaksch Equations”.
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B. Hard-core bosons in the Gutzwiller approximation

We employ and re-evaluate the expressions just calculated for the general form of the Gutzwiller

wave function ansatz (27) for (31) by identification of

αi0 = sin
θi
2
eiχi , αi1 = cos

θi
2
eiφieiχi , (44)

which corresponds to a cut-off of nc = 1 in the ansatz for the Gutzwiller wave function.

Let us first give some equilibrium properties of the system in terms of this parametrization

(compare [19]). All expectation values are given in terms of the HCB ansatz (31).

B.1. Equilibrium ground state and observables

We have

〈aj〉 = Φj =

nc−1∑
n=0

√
n+ 1α∗

jnαj(n+1) = sin
θj
2
cos

θj
2
eiφj =

1

2
sin θje

iφj (45)

and

〈ni〉 =
nc∑
n=1

nα∗
inαin = |αi1|2 = cos2

θi
2

=
1

2
(cos θi + 1) (46)

which yields when inserted in (39) and using for the kinetic term −J
∑

i

∑
〈j〉i Φ

∗
iΦj the identity

1
2

∑
i

∑
〈j〉i sin θi sin θje

i(φj−φi) =
∑

〈ij〉 sin θi sin θj cos(φi − φj):

E = 〈HHCB〉 = −J
2

∑
〈ij〉

sin θi sin θj cos(φi − φj) +
1

2

∑
i

Vi(1 + cos θi) . (47)

All following analytical calculations are done for the periodic system (without trap and hence

V = 0) with only a super lattice present such that the above energy expectation value takes the

form

〈ĤHCB − µN̂〉 = −J
2

∑
〈ij〉

sin θi sin θj cos(φi − φj)−
1

2

∑
i

µi(1 + cos θi) , (48)

where µi = µ + (−1)σ(i)A is the chemical potential modified with the super lattice potential -

σ(i) makes up for the generalization of the checkerboard lattice to higher than one dimension:

σ(i) = 0 for the even and σ(i) = 1 for the odd sublattice.

Minimization of this expression yields the ground state. It is trivially clear from a look on

(48) that

φi = φj ∀i, j (49)
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has to hold true. Differentiating w.r.t. θi then yields

µi tan θi = J
∑
〈j〉i

sin θj . (50)

For the homogeneous system with µi ≡ µ, θi ≡ θ and therefore
∑

〈j〉i sin θj = 2d sin θ where d is

the dimension of the lattice and 2d the number of nearest neighbors this simplifies to

cos θ =
µ

2dJ
. (51)

For the density we get

n =
1

L

∑
i

〈ni〉 =
1

2L

∑
i

(1 + cos θi) . (52)

For the zero momentum occupation number we can use 〈a†iaj〉 = Φ∗
iΦj for i 6= j such that we

obtain

nk=0 =
1

L

∑
ij

〈a†iaj〉 =
1

L

∑
i

〈ni〉+
1

L

∑
i6=j

〈a†iaj〉 (53)

=
1

2L

∑
i

(cos θi + 1) +
1

4L

∑
i 6=j

sin θi sin θj cos(φi − φj) (54)

= n+
1

4L

∑
i6=j

sin θi sin θj cos(φi − φj) . (55)

For the periodic 2-site system in d dimensions this simplifies to

n2sitek=0 = n+
1

4
sin θ1 sin θ2 cos(φ1 − φ2) . (56)

For the energy of the 2-site system we get when employing (48)

〈ĤHCB−µN̂〉2site = −dJ sin θ1 sin θ2 cos(φ1−φ2)−
1

2
(µ+A)(1+cos θ1)−

1

2
(µ−A)(1+cos θ2) . (57)

B.2. “Jaksch equations” for hard-core bosons

The Jaksch equations (30) take the following form when inserting the spin state parametrization

(44) (compare [15])

θ̇i = J
∑
〈j〉i

sin θj sin(φj − φi)

φ̇i = µi − J cot θi
∑
〈j〉i

sin θj cos(φj − φi) (58)

with an additional equation which determines χi, χ̇i = J cot θi2
∑

〈j〉i sin θj cos(φj − φi) which

will not further be considered, as χi does not appear in any physical quantities.
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As justified in the main text, for the periodic case, the system of differential equations reduces

to a two-site problem with µ1/2 = µ±A and periodic boundary conditions, such that (58) reads

θ̇1 = 2dJ sin θ2 sin(φ2 − φ1)

θ̇2 = 2dJ sin θ1 sin(φ1 − φ2)

φ̇1 = µ+A− 2dJ cot θ1 sin θ2 cos(φ2 − φ1)

φ̇2 = µ−A− 2dJ cot θ2 sin θ1 cos(φ1 − φ2) (59)

With the definition of φ ≡ φ1 − φ2 and subtraction of the last two preceding equations this

takes the form (given in the main text and article)

θ̇1 = −2dJ sin θ2 sinφ (60a)

θ̇2 = 2dJ sin θ1 sinφ (60b)

φ̇ = 2A− 2dJ(cot θ1 sin θ2 − cot θ2 sin θ1) cosφ (60c)

The initial condition employed is the ground state of the homogeneous system (without a super-

lattice potential present, hence A = 0) that has already been calculated (φ = 0 and cos θ = µ
2dJ ,

but we prefer here a parametrization via the density using n = 1
2(1+ cos θ)). Hence this ground

state is given by the configuration:

θ1(t = 0) = θ2(t = 0) = arccos(γ) where γ ≡ 2n− 1 (61a)

φ(t = 0) = 0 . (61b)

Equations (60) and (61) define an initial value problem with a unique solution.

B.3. Analytic calculation of the revival time

To calculate analytically the revival time for the HCB system in the Gutzwiller approximation,

we need to solve the initial value problem (60) and (61). This is done by treating it like a

classical system, employing potential and Hamilton functions.

First we note that the quotient (60a)
(60b) (the division is allowed for sinφ 6= 0 and sin θ2 6= 0 which

is fulfilled for the cases we consider) yields the exact (total) differential equation

sin θ1 + sin θ2
dθ1
dθ2

= 0 (62)

with its potential function

F (θ1, θ2) = cos θ1 + cos θ2 . (63)

For exact differential equations, F (θ1(t), θ2(t)) ≡ F (t) = F (0) ∀t holds true. Thus insertion of
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the initial condition (61a) yields

θ2(t) = arccos(2γ − cos θ1(t)) ∀t . (64)

With this the system (60) can be reduced to two equations. By insertion of (64) and definition

of θ ≡ θ1 one immediately finds

θ̇ = −2dJ R(θ) sinφ , (65a)

φ̇ = 2A− 2dJ cosφ
(
R(θ) cot θ − sin θ(2γ − cos θ)

R(θ)

)
, (65b)

where R(θ) ≡ sin(arccos(2γ − cos θ)) ≡
√

1− (2γ − cos θ)2, as sin(arccos(x)) =
√
1− x2. This

looks quite horrible, but we remember that they still describe a physical situation where the

energy should be conserved being the natural candidate for the Hamilton function of this system

of differential equations.

Application of the result (64) in (57) yields for the energy expectation value:

H(θ, φ) ≡ 〈ĤHCB − µN̂〉

= −dJ sin θ cosφR(θ)−A cos θ + C, (66)

where C ≡ −(µ−A)γ −A (67)

The evaluation of the partial derivatives then reads

∂θH(θ, φ) = φ̇ 2 sin θ ,

∂φH(θ, φ) = θ̇ 2 sin θ ,

where θ̇ and φ̇ are given by (65). This shows that H(θ, φ) indeed is a Hamilton function for the

two coupled equations (65a) and (65b), modified with the Euler multiplier 2 sin θ. The Hamilton

function does not change with time, therefore

H(t) = H(t = 0) ≡ H0. (68)

To make use of this property we need to calculate the initial value of H. We consider a super

lattice quench. This means that at t = 0 a super lattice is ramped up at time scales much faster

than the reaction time of the system such that it is still in its ground state at t = 0 when the

evolution starts. The energy of the system at t = 0 is therefore calculated with a super lattice

present but with a configuration that is still the ground state of the homogeneous system - we
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employ expression (66) and the initial values (61) for θ and φ:

H0 ≡ H(θ = arccos γ, φ = 0)

= −(1− γ2)dJ − γA+ C (69)

= −4n(1− n)dJ − (2n− 1)A+ C (70)

For convenience we define

H′
0 ≡ H0 − C (71)

We can express φ in terms of θ by exploiting (68) with (66) inserted

H(t) = H0

⇔ − dJ sin θ cosφR(θ)−A cos θ = H′
0 (72)

⇔ φ = arccos

(
H′

0 +A cos θ

−dJ sin θ R(θ)

)
. (73)

Below we will see that these equations further provide the information about the structure of

the orbit of the system (65) necessary to calculate the revival time.

Insertion of (73) into (65a) then yields

θ̇ = −2dJ R(θ)

√
1−

(
H′

0 +A cos θ

−dJ sin θ R(θ)

)2

(74)

where again sin(arccos(x)) =
√
1− x2 was used. This can simply be integrated

t =

∫ θ(t)

θ0

dθ

−2dJ R(θ)

√
1−

(
H′

0+A cos θ
−dJ sin θ R(θ)

)2
(75)

=

∫ θ(t)

θ0

−dθ sin θ

2
√

(dJ)2(1− (2γ − cos θ)2) sin2 θ − (H′
0 +A cos θ)2

(76)

The last integral takes a somewhat prettier form when substituting u ≡ cos θ:

t =

∫ u(t)

u0

du

2
f(u), where (77)

f(u) =
1√

(dJ)2(1− u2)(1− (2γ − u)2)− (H′
0 +Au)2

Finally we wish to extract the revival time out of this expression. For this we note that when

we insert (64) and (73) in the expression for the zero momentum occupation number (53) we
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get a simple expression for nk=0 (33):

nk=0(t) = n− 1

4 d J
(H′

0 +A cos θ(t)) . (78)

We know from the numerical solution that nk=0(t) is a periodic function. The last equation

tells us that cos θ(t) defines this periodicity. A full revival is therefore reached if cos θ(t) reaches

its initial value cos θ0 = γ. As cos θ(t) and cosφ(t) are mapped onto each other by (73) they

oscillate with the same period (this is as well observed in the numerical solution). Initially we

have cosφ0 = 1, from the numerical results we further know that cosφ(t) oscillates symmetrically

around 0 such that a half period is reached when cosφ(trev/2) = − cosφ0 = −1 and a full period

when cosφ(trev) = cosφ0 = 1.

By insertion of cosφ(trev/2) = −1 in (73) we can thus determine the value θ(trev/2) ≡ θ∗ of

θ(t) after a half oscillation

(73)

⇒ − 1 =
H′

0 +A cos θ∗

−dJ sin θ∗R(θ∗)
. (79)

One immediately observes that finding this value θ∗ is equivalent to finding the non-trivial zeros

of the denominator of the integrand in expression (75) as - except for the case of half filling -

(79) has to be squared to be solved. In this case it is clear that the value of theta after a full

oscillation θ(trev) = θ0 = arccos γ is another non-trivial solution, as the sign on the left-hand

side of (79) does no longer matter. For practical reasons in the following we rather look for

the zero of the denominator in the integral expressions based on (75) than talking about the

solution of the squared condition (79). Hence, in terms of the integral expression (77) in which

the substitution u ≡ cos θ was made we can state that the value u(trev/2) of u(t) after a half

oscillation is given by one of the four zeros of the denominator of f(u). As just explained for θ

one solution is u = u0 = γ. To identify the correct solution among the other three one uses that

it must fulfill u ∈ [−1, 1] as u = cos θ. The statement that two of four solutions of f−1(u) = 0 are

not within [−1, 1] can not rigorously be proven but was numerically tested for many examples.

Also f−1(u) = 0 can in principle analytically be solved (polynomial of fourth order) but is a

cumbersome expression such that we do not give it here. With these considerations we are able

to give the final result

trev =

∫ u2

u1

du f(u), where

f(u) =
1√

(dJ)2(1− u2)(1− (2γ − u)2)− (H′
0 +Au)2

(80)

u1 ≡ u0 ≡ γ (81)

u2 ⇔ f−1(u2) = 0 and u2 ∈ [−1, 1] and u2 6= γ (82)

35



B.4. Results for half filling

We add the results for the case of half filling (µ = 0, n = 1
2 , γ = 0) in which the complexity of

all expressions reduces a lot. Expressions are denoted with the subscript hf .

The energy becomes

H0hf = −dJ −A ⇒ H′
0hf = −dJ , (83)

and

Rhf(θ) =
√

1− (2γ − cos θ)2 = sin θ (84)

Insertion of these results in the expression for the condition that determines the upper boundary

(79) yields

−1 =
−dJ +A cos θ∗

−dJ sin2 θ∗
⇒ u2 ≡ cos θ∗ =

A

2dJ

(√
1 + 8(dJA )2 − 1

)
(85)

With this and u1 = γ = 0 the revival time trev becomes

trev hf =

∫ u2

0

du√
(dJ)2(1− u2)2 − (dJ −Au)2

(86)

B.5. Divergence of the revival time at half filling

The following considerations are based on the general ideas of B. Sciolla on how to treat the

preceding integral expression (86). The calculations below were not part of the internship in

spring 2010 but added in January 2011.

The revival time for half filling (86) can be written as

trev hf =
1

dJ

∫ u2

0

du√
((1− u2)2 − (1− A

dJ u)
2
. (87)

As is noted in the main text, the revival time diverges for A
dJ = 1 (where in the main text

A = 1 is set throughout) in the case of half filling (we note that for half filling in the equilibrium

case at A
dJ = 2 the transition to the Mott insulator appears). This effect describes a dynamical

phase transition in the relaxation behavior of the HCB model after the super-lattice quench.

Such a transition has already been described in detail for the Bose-Hubbard model [32].

In the preceding integral expression (87) the divergence becomes apparent when factorizing

the denominator of the integrand. Note that u2 = 1 (use (85)) for A
dJ = 1 such that (87) formally

becomes

trev hf =
1

dJ

∫ 1

0

du

(1− u)
√
u(u+ 2)

for
A

dJ
= 1 . (88)

This expression is clearly divergent due to the behavior of the integrand in the neighborhood

of u = 1. To extract the nature of the divergence we set dJ = 1 and A = 1+ ε and ε small. The
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upper boundary of the integral can now be expanded (use (85)):

u2 =
1 + ε

2

(√
1 + 8( 1

1+ε)
2 − 1

)
= 1− ε

3
+O(ε2) (89)

Then (87) reads

trev hf =

∫ 1−ε/3+O(ε2)

0

du√
((1− u2)2 − (1− (1 + ε)u)2

for A = 1 + ε , dJ = 1 (90)

Expanding the integrand in (90) yields

f(u) =
1√

u(2 + u)

(
1

(1− u)
+

ε

(1− u)2(2 + u)

)
+O(ε2) (91)

where clearly the second term linear in ε (and also all higher order terms) only yield a finite

contribution when evaluated in the integral (90).

We can thus approximate

trev hf =

∫ 1−ε/3

0

du

1− u
+O(1) for A = 1 + ε , dJ = 1

= − ln(1− u)|1−ε/30 +O(1)

= − ln(ε) +O(1) . (92)

This is a logarithmic divergence for ε → 0 known to be characteristic for the dynamical phase

transition in the mean field picture [32].
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