
Orbital order in a spin-polarized

two-band Hubbard model

Bachelorarbeit im Fach Physik

vorgelegt der mathematisch-naturwissenschaflichen Fakultät

der Universität Augsburg von

Fabian Alexander Wolf

Juli 2009

angefertigt am Lehrstuhl für theoretische Physik III

- Elektronische Korrelationen und Magnetismus -

Institut für Physik der Universität Augsburg

bei Prof. Dr. D. Vollhardt
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Abstract

In this work we prove the existence of a new phenomenon in the orbital order of a spin-
polarized two-band Hubbard model, evaluated with the Gutzwiller approximation. This
phenomenon is a transition in the orbital polarization which occurs continuously for arbi-
trarily weak interaction and involves a small fraction of electrons.

We obtain an explicit expression for the magnitude of the orbital polarization and an-
alyze its dependence on the interaction constant U and the hopping constants tν of the
bands. Furthermore we show that the effect is not present in the Hartree-Fock approxi-
mation and that in particular cases it also disappears in the Gutzwiller approximation.

Finally we present numerical results for the semi-elliptic density of states and find
agreement with the analytical results for weak interaction.
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1 Introduction

In this work we investigate a spin-polarized two-band Hubbard model. We assume that the
spin-polarization is due to Hund’s rule coupling. Takahashi and Shiba [1] used a simplified
two-band Hubbard model to describe this two-band system where the spins in both bands
are aligned. Motivated by the finding of a new continuous transition in the orbital order
of such a system in one dimension achieved by Greger [2], we investigate if this effect
is also present in a general Gutzwiller approximated system. The work is therefore also
highly linked to the article [3], where, also by the use of the Gutzwiller variational method,
orbital-order transitions in a three-dimensional system were investigated.

1.1 The Hamiltonian of a spin-polarized two-band Hubbard

model

The Hubbard model was introduced 1963 by Hubbard [4], Kanamori [5] and Gutzwiller [6]
as a highly simplified model which should capture important effects of the physics of
transition-metal oxides. The general two-band Hubbard Hamiltonian looks like this:

ĤHub =
∑
kkkνσ

εkkkν â
+
kkkνσâkkkνσ + U

∑
iν

n̂iν↑n̂iν↓ + V
∑
iσσ′

n̂i1σn̂i2σ′

+ F
∑
iσσ′

ĉ+
i1σ ĉ

+
i2σ′ ĉi1σ′ ĉi2σ +G

∑
iν

ĉ+
iν↑ĉ

+
iν↓ĉiν↓ĉiν↑ ,

(1.1)

where εkkkν is the dispersion relation, n̂iνσ the density operator and â+
kkkνσ, âkkkνσ, ĉ+

iνσ, ĉiνσ are
creation and annihilation operators in kkk- and real space. The first term of the Hamiltonian
describes the kinetic energy and the second (U) the on-site interaction in each band. The
third (V ), the fourth (F ) and the last (G) term are due to the density interaction, the
exchange interaction and pair hopping between two bands, respectively.

The model in the ferromagnetic phase

We consider the situation that Hund’s rule coupling aligns the spins in both bands. This
can be achieved by choosing the responsible exchange constant F to be sufficiently large.
The system then finds itself in a stable ferromagnetic phase in which for all electrons holds,
say, σ = ↑. It now follows that we can neglect the energetically unfavorable σ = ↓ states
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1 Introduction

and consider only the σ = ↑ sector of the Hamiltonian. The idea to consider this case with
the in the following derived model Hamiltonian goes back to – as already mentioned above
– Takahashi and Shiba [1].

In this situation the U - and the G-term yield zero as they describe hopping between
states with different spin directions. We can then write (1.1) as an effective Hamiltonian
reflecting the σ = ↑ sector of ĤHub:

Ĥeff =
∑
kkkν

εkkkν â
+
kkkν↑âkkkν↑ + V

∑
i

n̂i1↑n̂i2↑ + F
∑
i

ĉ+
i1↑ĉ

+
i2↑ĉi1↑ĉi2↑︸ ︷︷ ︸

= −n̂i1↑n̂i2↑

. (1.2)

We define Ũ while assuming the following inequality to be fulfilled:

Ũ := V − F > 0 . (1.3)

The assumption can be motivated by the fact that the relation U > V > F ∼= G typically
holds true.

Furthermore it is clear that the evaluation of (1.2) does not depend on the spin index
↑. We therefore define a new set of operators â+

kkkν , âkkkν , n̂i1, n̂i2 which corresponds to the
operators used in (1.2) but lacks the spin index. This new set will now be used to analyze
the spin-independent processes described by (1.2).

With the replacement of the operators in (1.2) by the according new operators and the
definition of Ũ we can finally write down the model Hamiltonian that is the starting point
for this work:

Ĥeff =
∑
kkkν

εkkkν â
+
kkkν âkkkν + Ũ

∑
i

n̂i1n̂i2 . (1.4)

One sees immediately that this model Hamiltonian is formally equivalent to the one-band
Hubbard model for fermions with different hopping constants for each spin direction (the
only difference compared to our model is the replacement of ν by σ). In this analogy it is
clear that we assume the dispersion relation for each band to have the same kkk-dependence:
εkkkν = tν ε̃kkk, but different hopping constants: t1 6= t2. This situation – in contrast to the
case t1 = t2 – has still not been much investigated.

We will in the following drop the tilde of Ũ in (1.4).

1.2 The variational method

Quantum-mechanical many-body problems can almost never be solved exactly. One ap-
proach to find solutions for them is to use variational wave functions. The general strategy
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1.2 The variational method

is to think about an explicit wave function

|Ψvar〉 = Ĉ (ggg) |Φ0〉 , (1.5)

where Ĉ (ggg) is an operator which modifies the starting wave function |Φ0〉 with respect
to a set of variational parameters (g1, ..., gn) ≡ ggg. One usually wants to find the ground-
state wave function, which is the one with the smallest energy eigenvalue of the system
Hamiltonian. Therefore we try to get the optimized |Ψvar〉 by minimizing the expectation
value of the Hamilton operator (known as the Ritz variational principle):

EΨvar =
〈Ψvar|Ĥ|Ψvar〉
〈Ψvar|Ψvar〉

. (1.6)

The obtained optimal wave function is of course not necessarily the true ground-state
wave function, but is restricted to the chosen form of |Ψvar〉. That is, the true ground
state can perhaps not at all be arrived at, if one does not cover all possible |Ψ〉 with the
applied |Ψvar〉. This naturally is hopeless in almost all cases.

Hence it is similarly unlikely to extract the true ground-state energy. Furthermore the
corresponding |Ψvar〉 cannot be expected to reflect the physical nature of the problem in
aspects other than the system energy.

Starting from the Hubbard Hamiltonian (1.4) we can immediately write down its en-
ergy expectation value per site (the division by L yields a simpler notation in following
calculations):

Eper site
Ψvar

≡ 1
L
〈ĤHub〉Ψvar =

1
L

∑
kkk ν

εkkkν〈â+
kkkν âkν〉Ψvar +

U

L

∑
i

〈n̂i1n̂i2〉Ψvar . (1.7)

From now on we will always work with the energy per site and therefore drop the index:
EΨvar ≡ Eper site

Ψvar
. We make the common abbreviations for the occupancy nkkkν of a state

|kkkν〉 and the double occupancy d of a site i:

nkν(ggg) = 〈a+
kkkνakkkν〉Ψvar (1.8)

d(ggg) =
1
L

∑
i

〈D̂i〉Ψvar where D̂i := n̂i1n̂i2 . (1.9)

These depend on ggg because of their dependence on Ψvar. Now the energy can be written
as

EΨvar(ggg) =
1
L

∑
νkkk

εkkkν nkkkν(ggg) + Ud(ggg) . (1.10)
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1 Introduction

1.2.1 The Hartree-Fock approximation

The fundamental approximation one makes in the Hartree-Fock approximation (HFA) is
that the variational wave function |Ψvar〉 is taken to be an unchanged Slater determinant:

|ΨHF〉 =
∏

kkkν,εkkkν≤εFν

a+
kkkν |vac〉 . (1.11)

The Slater determinant form of the wave function makes up for two important charac-
teristics of a quantum mechanical system. First, the indistinguishability of the particles
and second, the Pauli principle.

We already stated that the resulting wave function still has the form of the uncorrelated
starting wave function (the Fermi sea) as there actually is no explicit variational operator
(what is optimized are the one-particle wave functions the Slater determinant is build up
with). The occupancy of momentum space is therefore the same as in the non-interacting
case, i.e.

nkkkν =

{
1 for εkkkν ≤ εFν
0 for εkkkν > εFν .

(1.12)

Additionally the averaged product in (1.8) can – for the same reason – be split up:

〈D̂i〉HF = 〈n̂i1n̂i2〉HF = 〈n̂i1〉HF〈n̂i2〉HF ⇒ d = n1n2 .

Inserting these results in (1.10) gives the following expectation value for the energy:

EHF =
1
L

∑
ν, εkkkν≤εFν

εkkkν + Un1n2 . (1.13)

where n1, n2 are the expectation values for the electron density in the according band.

We state that the whole expression depends on U only in linear order and therefore
refer to the HFA as an approximation linear in U .

1.2.2 The Gutzwiller wave function

For the Hubbard model, the simplest variational wave function of the form (1.5) was
introduced by Gutzwiller 1963 [6]. The idea of it is to vary the double occupancy d in the
starting wave function, which is inspired by the fact that interaction leads to a reduction
of d compared to the uncorrelated case. One starts with the following ansatz for | Ψvar〉:

|ΨG〉 = g
P
i D̂i |Φ0〉 =

∏
i

[
1− (1− g)D̂i

]
|Φ0〉 , (1.14)
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1.2 The variational method

where g is a scalar variational parameter and |Φ0〉 is the noninteracting Fermi sea, i.e. a
Slater determinant. One immediately sees that g = 1 yields the HFA and g < 1 makes up
for the reduction of d. It is equally clear that |ΨG〉 covers up a tremendously bigger field
of wave functions than the HFA, as it got rid of the fact that the starting wave function
remains a Slater determinant throughout the whole variation process (this is accomplished
by the operator D̂i which modifies the amplitudes of the one-particle wave functions in
real space).

1.2.3 The Gutzwiller approximation

Besides introducing the wave function (1.14), Gutzwiller constructed an approximation
scheme [6,7] that allowed him to obtain an explicit expression for the ground state energy
of the Hubbard model in terms of (1.14). This approximation (in the following called GA,
see [8] for further explanation) was shown to be an exact evaluation of the Gutzwiller wave
function in infinite dimensions by Metzner and Vollhardt [9, 10].

In this limit of infinite dimensions, the GA yields the following sectionwise constant
occupancy of the momentum space [7]:

nkkkσ =

{
(1− qσ)nσ + qσ for n0

kkkσ = 1
(1− qσ)nσ for n0

kkkσ = 0
(1.15)

where nσ is the particle density for one spin and n0
kkkσ denotes the momentum distribution

of the non-interacting Fermi sea. It is used to identify the position of the Fermi edge when
interaction is turned off. The discontinuity qσ at the Fermi edge is given by:

qσ =

(√
(nσ − d)(d− n+ 1) +

√
(nσ − d) d

)2

nσ(nσ − d)
, (1.16)

whereas the double occupancy d is related to the variational parameter g by:

g2 =
(1− n+ d) d

(n↑ − d)(n↓ − d)
. (1.17)

We recognize that d is an equally good variational parameter compared to g, but is easier
to handle as it appears directly in the qσ term. In the whole work we will therefore use d
for further variational calculations. To apply these results to our model we simply change
the index σ to ν.
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1 Introduction

We then insert (1.15) and (1.16) into (1.10) and end up with:

EG(d) =
1
L

∑
ν

(∑
kkk

n0
kkkσ(εkkkν (1− qν(d))nν + qν) +

∑
kkk

(1− n0
kkkσ)εkkkν(1− qν(d))nν

)
+ Ud

=
1
L

∑
ν

(
(1− qν(d))nν

∑
kkk

εkkkν + qν(d)
∑
kkk

n0
kkkσεkkkν

)
+ Ud .

(1.18)

Here the factors n0
kkkσ and (1− n0

kkkσ) ensure the correct summation range (see (1.15)).
It is clear that the dependence of d on U – resulting from the variational process – can

be rather complicated. Hence we expect that the GA is an approximation which is not
linear in U as the HFA, but contains at least terms of order U2 for small U .

1.3 The density of states

For convenience in calculations we switch from the momentum space notation to a math-
ematical description in terms of the density of states (DOS)

ρ(ε) =
1
L

∑
kkk

δ(ε− εkkk) . (1.19)

We can use the following simple transformation for any sum over a function f(εkkk):

1
L

∑
kkk

f(εkkk) =
1
L

∑
kkk

f(εkkk)
∫ ∞
−∞

dε δ(ε− εkkk)︸ ︷︷ ︸
= 1

=
∫ ∞
−∞

dε f(ε)
1
L

∑
kkk

δ(ε− εkkk)︸ ︷︷ ︸
= ρ(ε)

=
∫ ∞
−∞

dε f(ε)ρ(ε).
(1.20)

We will need the particle density of one band: nν = 1
L

∑
εkkkν≤εFν 1. This becomes in the

DOS description:

nν =
∫ εFν

−∞
dε ρν(ε) . (1.21)

In analogy to that, the average kinetic energy for each non-interacting band, εν = 1
L

∑
εkkkν≤εFν εkkkν ,

can be written as:
εν =

∫ εFν

−∞
dε ρν(ε)ε . (1.22)
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2 Definition of the model system

The aim of this work is to investigate the orbital order of the spin-polarized two-band
Hubbard model for which the Hamiltonian was already given in the introduction. That
means in our case that we try to find out if this system has a tendency to favor the residence
of electrons in one of the bands. It was already stated that our model Hamiltonian is
formally equivalent to that of a fermionic one-band Hubbard model. In this analogy the
presence of orbital order in our system corresponds to a (ferromagnetic) magnetization
m in the one-band Hubbard model. As the latter effect is the more familiar and more
investigated one which already provides some useful results, it facilitates the discussion of
orbital order if we treat it like a magnetization. In the following we will therefore do so
and use the expression orbital polarization m.

Now it makes sense to write the energy no longer in terms of the occupancy of the
bands, i.e. their particle densities n1, n2, but in terms of the overall particle density n and
the orbital polarization m by applying the substitution:

n = n1 + n2 and m = n1 − n2 . (2.1)

The problem that we encounter is the fact, that a two-band system with εkkk1 6= εkkk2 is in
general stable in a polarized state also if there is no interaction. We want to investigate
the net influence of interaction on the orbital order. This effect is expected to be small
compared to the magnitude of the initial orbital polarization of such a two-band system.
For convenience in calculations and a higher numerical accuracy we therefore adjust our
model system such that we obtain a nonpolarized ground state for U = 0. It is clear
that this procedure makes our system quite synthetic. We will come back to that in the
conclusion and restrict ourselves during this work to the model system defined below.

We require m = 0 ⇔ n1 = n2 for the noninteracting state. In momentum space one
can achieve that easily. We have already mentioned that the bands in our Hubbard model
are supposed to have different hopping constants t1 and t2 for the possibilities of hopping
from band 1 to band 2 and reverse (tν will also be referred to as the kinetic energy scale
of band ν). Besides that, the kkk-dependence of the dispersion relation - which mirrors
dimensionality and geometry of the lattice - is identical for each band. We therefore have:

εkkkν = tν ε̃kkk + Cν (2.2)

13



2 Definition of the model system

where we demand ∑
kkk

ε̃kkk = 0 (2.3)

for convenience. The constant Cν was added to fulfill the requirement m U=0= 0 and will
be determined now. As there is only one constraint to satisfy we can set C1 = 0. As
nν = 1

L

∑
εkkkν≤εFν 1 depends on ν only through kkkFν it follows (the superscript 0 will in the

following course of the work indicate m = 0):

n1 = n2 ⇒ kkk0
F1 = kkk0

F2 =:kkk0
F . (2.4)

The Fermi energy then has to be identical for both bands:

ε0kkkF1 = ε0kkkF2 =: ε0
F . (2.5)

Applying this, we can immediately determine C2 and summarize the results:

C1 = 0
(2.2)⇒ C2 = (t1 − t2)ε̃ 0

kkkF

(2.2)⇒ ε 0
F = t1 ε̃

0
kkkF
, ε̃ 0

F :=
ε 0

F

t1
≡ ε̃ 0

kkkF
.

(2.6)

To use this result for the description of the system in terms of the DOS, we first look at
an example. Fig. 2.1 shows an unadjusted system (corresponding to εkkkν = tν ε̃kkk) with the
constant DOS ρν(ε) = 1

tν
. The grey area is equivalent to the electron density in the second

band n2; similarly n1 can be identified. It is obvious that n2 < n1 holds and therefore the
pictured system is polarized.

Figure 2.1: Two-band system with constant DOS

Now one sees from the definition of ρ that the explicit lower integration limit of the
unchanged system is εminν = min

kkk εBZ
tν ε̃kkk, i.e. is the minimum of the image of the subset

kkk εBZ under the function tν ε̃kkk (in Fig. 2.1: εminν = tν
2 ). It is then clear that a constant

Cν added to the function tν ε̃kkk just corresponds to the same shift added to εminν . This

14



situation is pictured in Fig. 2.2.

Figure 2.2: Adjusted two-band system with constant DOS

We define the band-independent lower integration limit ε̃min:

ε̃min :=
1
tν
εminν . (2.7)

We will know calculate some expressions that will later be of use. Therefore we first
exploit some well known properties of the delta function:

ρν(ε)
(1.19)

=
1
L

∑
kkk

δ(ε− εkkk ν)

(2.2)
=

1
L

∑
kkk

δ (ε− tν ε̃kkk − Cν)

=
1
|tν |

1
L

∑
kkk

δ

(
ε− Cν
tν

− ε̃kkk
)

(1.19)
=:

1
|tν |

ρ̃

(
ε− Cν
tν

)
(2.8)

In the last step we achieved, in analogy to ε̃kkk, the band-independent expression ρ̃ for
the DOS. We will in the following consider only positive tν which makes things easier and
is no restriction to generality as the important quantity is the difference (t1− t2). We can
now write nν in the following way:

nν
(1.21)

=
∫ εFν

εminν+Cν

dε ρν(ε)

(2.8)
=

1
tν

∫ εFν

εminν+Cν

dε ρ̃

(
ε− Cν
tν

)
Subst. ε̂ =

1
tν

(ε− Cν)

=
∫ 1

tν
(εFν−Cν)

1
tν
εminν

dε̂ ρ̃(ε̂)
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2 Definition of the model system

For the case m = 0 we can write this (using the the relation 1
tν

(ε0
F−Cν)

(2.6)
= ε̃ 0

F and the
definition of ε̃min (2.7)) as:

n0
ν =

n

2
=
∫ ε̃ 0

F

ε̃min

dε ρ̃(ε) . (2.9)

We are now interested in obtaining – in analogy to ρ̃ and ε̃ 0
F – a spin-independent

expression ε̃ 0 ≡ ε̃ 0 for the kinetic energy of a band:

ε 0
ν =

∫ ε0Fν

εminν+Cν

dε ρν(ε)ε

Subst. as in (2) ε̂ =
1
tν

(ε− Cν)

(2.6)
=
∫ ε̃ 0

F

ε̃min

dε̂ ρ̃(ε̂)(tν ε̂+ Cν)

(2.9)
= tν

∫ ε̃ 0
F

ε̃min

dε̂ ρ̃(ε̂)ε̂︸ ︷︷ ︸
=: ε̃ 0

+
n

2
Cν

Finally we write this definition and the result properly:

ε̃ 0 :=
∫ ε̃ 0

F

ε̃min

dε ρ̃(ε)ε , (2.10)

ε 0
ν = tν ε̃

0 +
n

2
Cν . (2.11)

The reason why we put so much effort in the calculation of the band-independent ex-
pressions ρ̃, ε̃ 0

F and ε̃ 0 is, that we will later want to describe the system in its direct
dependence on (t1 − t2).
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3 Analytical results within the

Hartree-Fock approximation

We start with the HFA energy expectation value (1.13) of the Hubbard model. Writing it
using the DOS gives:

EHF =
∑
ν

εν + Un1n2

(2.1)
=
∑
ν

εν +
U

4
(
n2 −m2

)
.

(3.1)

The kinetic and the interaction term in (3.1) behave differently w.r.t. a change in m.
The first has a positive derivation w.r.t. m as a higher orbital polarization corresponds to
a state in which the movement of electrons is restricted. It is clear that this localization
increases the kinetic energy of the electrons.

The competing effect is reflected in the interaction term which gets smaller for increasing
m. This becomes mathematically obvious by looking at (3.1): Eint ∝ −m2, and has its
deeper explanation in the fact that in HFA double occupancy can only be reduced by an
increased polarization (whereas in a real correlated state there are more subtle ways to do
so). This effect is the origin of the high overestimation of the fully polarized ferromagnetic
phase in HFA.

In this work we are not interested in the known tendency to fully polarize (m = n),
but investigate if we can find an extremum m∗ 6= 0, but close to 0. The general strategy
(also for the next chapter) will be to expand EHF (and later EG) – in the following just
called E – at m = 0. We will first check if there is an extremum at m = 0 by evaluating
the first derivative. If there is one we will then analyze if it is a minimum or a maximum,
if there is none we will identify the position of the minimum with the help of the second
derivative. The expansion is:

E = E|m=0 +
dE

dm

∣∣∣∣
m=0

m+
1
2
d2E

dm2

∣∣∣∣
m=0

m2 +O(m3) . (3.2)

We will need the following relations:

dεν
dm

=
∫ εFν

−∞
dε ρν(ε)ε = ρν(εFν) εFν

dεFν

dm
. (3.3)
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3 Analytical results within the Hartree-Fock approximation

Furthermore we have:

nν =
∫ εFν

−∞
dε ρν(ε) ⇒ dnν

dm
= ρν(εFν)

dεFν

dm

n1/2 =
n±m

2
⇒

dn1/2

dm
= ±1

2

(3.4)

=⇒
dεF1/2

dm
= ± 1

2 ρ1/2(εF1/2)
. (3.5)

We arrive at:

d ε1/2

dm
= ±1

2
εF1/2 (3.6)

d2ε1/2

d2m

(3.5)
=

1
4 ρ1/2(εF1/2)

. (3.7)

Now back to the expansion. It is clear that if the constant factor dE
dm

∣∣
m=0

is zero, one
will find the extremum at m = 0. We get:

dE

dm

∣∣∣∣
m=0

=
∑
ν

dεν
dm

∣∣∣∣∣
m=0

+
U

4
d

dm

(
n2 −m2

)∣∣∣∣
m=0

(3.6)
=

1
2

(εF1 − εF2)
∣∣∣∣
m=0︸ ︷︷ ︸

(2.5)
= 0

+
U

4
(−2m)|m=0 = 0 . (3.8)

We now can state that the HFA – no matter which density of states we insert – always
yields an extremum at m=0. It remains to check whether this is a minimum:

d2E

dm2

∣∣∣∣
m=0

=
∑
ν

d2εν
d2m

∣∣∣∣∣
m=0

+
U

4
d

dm
(−2m)

∣∣∣∣
m=0

=
(

1
4 ρ1(εF1)

+
1

4 ρ2(εF2)

)∣∣∣∣
m=0

− U

2

(3.9)

The second derivative is greater than zero if:

U <
1
2

(
1

ρ1(εF)
+

1
ρ2(εF)

)
=:Uc , (3.10)

i.e. we get a minimum provided the interaction is not too strong. If the interaction constant
is bigger than a critical value Uc, one finds a maximum at m = 0 (see Fig. 3.1).
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Figure 3.1: Expectation value for the energy within the HFA. The parabola changes its
sign for U = 0.90 ≡ Uc.

It is clear that for U > Uc the stable state of the system is at m = ±n (none of the two
possibilities is more likely to occur) and no longer in an unpolarized state. This effect is
called Stoner instability.

19



3 Analytical results within the Hartree-Fock approximation
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4 Analytical results within the

Gutzwiller approximation

The question is again, if the system – this time analyzed using the results of the Gutzwiller
approximation – will be stable in a state with m = m∗ 6= 0 where m∗ is small. We apply
the same strategy as in the chapter before: expanding the energy expectation value at
m = 0. First we give necessary conditions for the existence of the minimum. Second we
evaluate its location, i.e. the magnitude of orbital polarization. All calculations were done
for n ≤ 1.

4.1 Conditions for orbital order

We start with (1.18) which is now analyzed for the investigated model. We can simplify
the expression (1.18) by applying (2.3) and the consecutive equations. This gives us:∑

kkk εkkk1 = 0 and
∑

kkk εkkk2 = LC2. If we now rewrite the remaining terms with the DOS
expressions we get:

E(m, d) =
∑
ν

qνεν + (1− q2)n2C2 + Ud. (4.1)

We have set EG = E(m, d) where – in contrast to chapter 3 – a second variational
parameter d occurs which can be traced back already to the GWF (see the intoduction).

Minimizing has therefore to be done with respect to two variables. We will tackle the
problem by first evaluating the condition for an extremum w.r.t. the second parameter d

∂E

∂d

∣∣∣∣
m, d

= 0 ⇒ d = d∗(m) , (4.2)

and taking this as a constraint for the evaluation w.r.t. m.

Again we want to expand the energy at m = 0. We therefore need:

dE

dm

∣∣∣∣
m=0

=
∂E

∂m

∣∣∣∣
m=0, d=d∗(0)

+
∂E

∂d

∣∣∣∣
m=0, d=d∗(0)︸ ︷︷ ︸
(4.2)
= 0

∂d∗

∂m

∣∣∣∣
m=0

. (4.3)

In the further course of the work the common alternative notation for a partial derivative
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4 Analytical results within the Gutzwiller approximation

fx ≡ ∂f
∂x will be frequently used (and the superscript 0 still indicates: f0 := f |m=0).

With condition (4.2) we differentiate (4.1):

dE

dm

(4.2)
=
∑
ν

(
∂qν
∂m

εν + qν
∂ εν
∂m

)
+
(
−∂q2

∂m
n2C2 + (1− q2)

∂n2

∂m
C2

)
. (4.4)

We need the derivatives at m = 0. It is therefore enough to give:

∂q1/2

∂m

∣∣∣∣
m=0

= ∓ 2 (n− 1)

(
8d2 + 4d− 8dn+ n2 − 4(n− 2d)

√
(1− n+ d)d

)
(n− 2)2n2

(4.5)

where we used the relation n− 2d ≥ 0 which holds, as:

0 ≤ 1
L

∑
i

〈(n̂i1 − n̂i2)2〉 =
1
L

∑
i

〈n̂2
i1 + n̂2

i2 − n̂i1n̂i2〉 =
1
L

∑
i

〈n̂i1 + n̂i2 − n̂i1n̂i2〉 = n− 2d .

All other derivatives in (4.4) have already been evaluated in chapter 3. We define in
particular: q0 := qν |m=0, ∓q0

m := ∂q1/2
∂m

∣∣∣
m=0

and insert (3.4) and (3.6) in (4.5):

dE

dm

∣∣∣∣
m=0

= q0
m(−ε 0

1 + ε 0
2 ) +

q0

2
(ε0

F1 − ε0
F2) +

(
−q0

m

n

2
− (1− q0)

1
2

)
C2

(2.5)
= q0

m

(
ε 0

2 − ε 0
1︸ ︷︷ ︸

(2.11)
= (t2−t1)ε̃0+n

2
C2

− C2

2

(
n+

1− q0

q0
m

)
︸ ︷︷ ︸

= n2

2(n−1)

)
(4.6)

With C2
(2.6)
= (t1 − t2)ε̃ 0

F we can summarize the condition for an extremum – which we
assume to be again a minimum for a not so strong interaction constant U – at m = 0 to:

(t1 − t2) q0
m

(
−ε̃ 0 + ε̃ 0

F

n (n− 2)
4(n− 1)

)
= 0 (4.7)

It is clear that this will in general not hold, as the bracket in (4.7) can – using (2.10) –
be written as the following integral equation for ε̃ 0

F which is not fulfilled in general:

∫ ε̃ 0
F

ε̃min

dε ρ̃(ε)ε− ε̃ 0
F

n (n− 2)
4(n− 1)

= 0 . (4.8)

We can immediately give exceptions: There are (at least) three independent situations
– apart from singular choices of n which lead to a satisfied condition (4.8) – each of which
is sufficient for (4.7) to hold:

Case 1: U = 0 Case 2: n = 1 Case 3: ρ̃(ε) = const
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4.1 Conditions for orbital order

To prove this, we need the explicit form of (4.2) for m = 0. We define q0
d := ∂qν

∂d

∣∣∣
m=0

and get:
∂E

∂d

∣∣∣∣
m=0, d=d∗(0)

= 0 ⇔ q0
d (ε 0

1 + ε 0
2 −

n

2
C2)︸ ︷︷ ︸

(2.11)
= (t1 + t2) ε̃0

+ U = 0 (4.9)

where

q0
d = −

8
(√

d
(
n
2 − d

)
+
√

(1− n+ d)
(
n
2 − d

))
(n− 2)n

√
2d(n− 2d)(d− n+ 1)(√

(1− n+ d)(
n

2
− 2d) +

√
d(−2d+ 3

n

2
− 1)

)
(4.10)

Proof Case 1: U = 0

If U = 0, it follows from (4.9) that q0
d(d) != 0 which yields the uncorrelated expectation

value d = n2

4 for the double occupancy. This is easily checked by considering the second
factor in (4.10):

d =
n2

4
(4.10)⇒

√(n2

4
− n+ 1

)
︸ ︷︷ ︸

n<2= 1− n
2

(n
2
− 2

n2

4

)
︸ ︷︷ ︸
n
2 (1− n)

+
n

2

(
− 2

n2

4
+ 3

n

2
− 1
)

︸ ︷︷ ︸
−(1− n)(1− n

2 )

= 0 (4.11)

It is similarly simple to check q0
m

(
d = n2

4

)
= 0 by evaluating (4.5). Eq.(4.7) then follows

directly.

Proof Case 2: n = 1

Rewrite (4.7):

(t1 − t2)
q0
m

n− 1

(
−(n− 1)ε̃ 0 + ε̃ 0

F

n (n− 2)
4

)
= 0 (4.12)

The terms in the bracket give zero for n = 1 (as ε̃ 0
F = 0). The term q0m

n−1 is finite, which is
obvious when comparing it with (4.5).

Proof Case 3: ρ̃(ε) = const

We evaluate (2.9) for the normalized DOS ρν = 1
tν
⇒ ρ̃(ε) = 1, i.e. ε̃minν = −1

2 and get:

n

2
=
∫ ε̃ 0

F

− 1
2

dε ⇔ ε̃ 0
F =

n− 1
2

. (4.13)
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4 Analytical results within the Gutzwiller approximation

With (2.10) we get:

ε̃ 0 =
∫ n−1

2

− 1
2

dε ε =
1
8
n(n− 2) (4.14)

Inserting these two results for ε̃ 0
F and ε̃ 0 in (4.12) immediately shows that (4.7) holds.

4.2 Magnitude of the orbital polarization

4.2.1 Formal evaluation for the case of not too strong UUU

Until now we did not check whether we will indeed get a minimum and not a maximum
for m∗. This check could in principle be done by analyzing the sign of the complicated
second derivative of E. For now we will omit this check and assume that we deal with
a minimum. Furthermore we do not allow U to get so big, that it could induce the fully
polarized state, as we are not interested in the Stoner instability. In the numerical part of
the work, chapter 5, one will see that these assumptions are justified.

Let’s consider the expansion of the energy (3.2) again. We assume that the minimum
is close enough to m = 0, that we can take the parabola as a good approximation of the
actual function. If that is the case, we can immediately give the position of the minimum:

m∗ = −
dE
dm

∣∣
m=0

d2E
dm2

∣∣∣
m=0

+O(m∗)3 . (4.15)

This was achieved by completing the square: am2 + bm = a
(
m+ b

2a

)2 − b2

4a2 ⇒ m∗ =

− b
2a where a = 1

2
d2E
dm2

∣∣∣
m=0

and b = dE
dm

∣∣
m=0

.

We evaluate the second derivative of E w.r.t. m:

d2E

dm2
= Emm + 2Emd

∂d

∂m
+ Ed

∂2d

∂m2
+ Edd

(
∂d

∂m

)2

(4.16)

and consider it at m = 0 assuming condition (4.2) to be fulfilled:

d2E

dm2

∣∣∣∣
m=0, d=d∗(0)

(4.2)
= Emm

∣∣∣
0, d∗(0)

+ 2Emd
∣∣∣
0, d∗(0)

∂d∗

∂m

∣∣∣∣
0

+ Edd

∣∣∣
0, d∗(0)

(
∂d∗

∂m

∣∣∣∣
0

)2

. (4.17)

In the following the terms which appear in dE
dm

∣∣
m=0

and d2E
dm2

∣∣∣
m=0

are written down
explicitly in a form that shows their direct dependence on t1 and t2.

E0
m is just (4.6):

E0
m = (t1 − t2) q0

m

(
−ε̃ 0 + ε̃ 0

F

n (n− 2)
4(n− 1)

)
. (4.18)
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4.2 Magnitude of the orbital polarization

Using ρν(ε0
F) = 1

tν
ρ̃(ε̃ 0

F) = : 1
tν
ρ̃ 0 we can evaluate E0

mm starting from (4.4). We state
that qνmm|m=0 = q0

mm. The result is:

E0
mm = (t1 + t2)

(
q0
mm ε̃

0 − q0
mε̃

0
F +

1
4
q0

ρ̃ 0

)
. (4.19)

E0
md formally follows immediately from (4.18):

E0
md = (t1 − t2) q0

md

(
−ε̃ 0 + ε̃ 0

F

n (n− 2)
4(n− 1)

)
. (4.20)

E0
dd follows directly from (4.9):

E0
dd = (t1 + t2)q0

dd ε̃
0 . (4.21)

To complete this, one has to give the explicit form of the derivatives of q. q0
m and q0

d have
already been evaluated in (4.5) and (4.10). The remaining derivatives are listed below:

q0
mm = 4

(
16 d

2

n3 − 24 d
2

n2 + 12d
2

n + 8 d
n3 − 28 d

n2 + 30 dn − 12d+ n− 1

+ (n− 2d)
√

(1− n+ d)d
(
− 8

n3 + 12
n2 − 6

n + (n−2)2

n(n−2d)2

))
1

(n−2)3

(4.22a)

q0
md = 4(n− 1)(n− 2d)

(
2
√

(1− n+ d)d
(
1− 2(n− 2d)

)
+ 8d2 + n2 − n+ 2d(4n− 3)

)
× 1

(n−2)2n2(n−2d)
√

(1−n+d)d

(4.22b)

q0
dd =

(
− 32d4 + 16(4n− 3)d3 + 16(d2 + 4(n− 1)d)(n− 2d)

√
(1− n+ d)d

+ 12
(
n(4− 3n)− 1

)
d2 + 4(n− 1)2nd+ (n− 1)2n2

)
× 1

(n−2)n(n−2d)
“√

(1−n+d)d
”3

(4.22c)

where we again used the relation n− 2d ≥ 0.

The only term which remains to evaluate is ∂d∗

∂m

∣∣
m=0

. To calculate it we would need the
explicit or the inverse function of d∗(m), both of which are hard to get from the constraint
(4.2), as already the simplified equation (4.9) (there m equals zero) is analytically solvable
not without great effort. Additionally the result of this calculation is too complicated to
provide any meaningful information. We therefore have to think about an approximation
of the constraint. It seems advisable for this procedure to make use of the fact that our
derivation of the minimum m∗ is correct only in quadratic order in m (Taylor expansion),
so that if we keep the order m2, we will not lose any accuracy.
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4 Analytical results within the Gutzwiller approximation

Approximating the constraint w.r.t. mmm

We have to get ∂d∗

∂m

∣∣
m=0

from the constraint (4.2) for generalm. We write it down explicitly
(we already did it for the special case m = 0 in (4.9)):

∂E

∂d

∣∣∣∣
m, d∗(m)

= 0 ⇔ q1d ε1 + q2d

(
ε2 −

n−m
2

C2

)
︸ ︷︷ ︸

=: f(m, d)

+ U = 0 (4.23)

where we defined a function f(m, d) just to keep the notation bearable.

We expand it w.r.t. m:

f(m, d) = f(0, d) + fm(0, d)m+
1
2
fmm(0, d)m2 +O

(
m3
)

(4.24)

We can now easily get m(d) as we only deal with a quadratic equation:

m(d) =
−f0

m(d) +
√

(f0
m(d))2 − 2f0

mm(d)(f0(d) + U)
f0
mm(d)

(4.25)

where we chose the ”+” solution of the quadratic formula being the solution which reflects
the behavior in linear order.

We get ∂d∗

∂m

∣∣
m=0

by applying the rule for the derivative of an inverse function:

∂d∗

∂m

∣∣∣∣
m=0

=
1

∂m
∂d

∣∣
d=d∗(m=0)

. (4.26)

With that we have formally solved the problem by finding the minimum. The obstacle
which makes it hard to get the final explicit solution is to evaluate the value of d∗(m = 0)
in (4.26). This can in principal be done by solving (4.9) like we did it in Proof 1 before,
but this time for U 6= 0:

(4.9)⇒ q0
d(d) != − U

(t1 + t2)ε̃ 0
, (4.27)

where q0
d(d) is given by (4.10).

With that we have the strategy for a numerical solution of the problem. The latter
will not consitute a problem, as q0

d is a well behaved function in the interval of interest.
In Fig. 4.1 this becomes obvious. There we also see that q0

d(
n2

4 ) = 0 (have a look at the
intersections with the d-axis: n2

4 = 0.16 forn = 0.8 , ...).

The explicit numerical solution will be done for the Bethe lattice in chapter 5. We will
now not further investigate the general case but restrict ourselves on the evaluation for
small U .
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Figure 4.1: The discontinuity at the Fermi edge of the momentum distribution (for m = 0)
q0
d is a smooth function. It is plotted for different n. The intersections with

the d-axis are found at n2

4 .

4.2.2 Explicit results for a small interaction constant UUU

Now we want to gain explicit results for the behavior of m∗. The problem in the section
before was, that the dependence of the constraint on d was too complicated to yield
meaningful results. Therefore we expand it also w.r.t. to d.

Approximating the constraint w.r.t. ddd

We again look at Eq.(4.23) and expand it w.r.t. d. As we approximate for small U , we
expand at the U = 0 value for the double occupancy d = n2

4 . For convenience in the
notation we introduce the variable δ (being the negative difference of the actual and the
U = 0 value of d):

δ := d− n2

4 . (4.28)

With that we get (in analogy to (4.24)):

f(m, d) = f(0, n
2

4 ) + fm(0, n
2

4 )m+ 1
2fmm(0, n

2

4 )m2 + fd(0, n
2

4 ) δ +O
(
m3, δ2,m δ

)
(4.29)

We dropped the O(mδ) term as it would exceed the linear order in δ.

We recognize by comparison with (4.9) that we already can formally write down two of
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4 Analytical results within the Gutzwiller approximation

the terms in (4.29):

f(0, n
2

4 ) = q0
d(
n2

4 ) (t1 + t2) ε̃ 0 (4.30a)

fd(0, n
2

4 ) = q0
dd(

n2

4 ) (t1 + t2) ε̃ 0 (4.30b)

We get the m terms by explicit differentiation. Again we make use of our former
definition: q1/2m

∣∣
m=0

= ∓q0
m ⇒ q1/2md

∣∣
m=0

= ∓q0
md = ∓q0

dm, and get with an analog
relation for the second derivative qνmm|m=0 ( qνmmd|m=0 = q0

dmm):

fm(0, d) = q1dm(0, n
2

4 )ε 0
1 + q2dm(0, n

2

4 )
(
ε2 − n−m

2 C2

)∣∣
m=0

+ q2d(0, n
2

4 ) 1
2C2

= −q0
dm(n

2

4 )(t1 − t2) ε̃ 0 + q0
d(
n2

4 )1
2C2

(4.31a)

fmm(0, d) = q0
dmm(n

2

4 )(t1 + t2) ε̃ 0 + q0
dm(n

2

4 )C2 (4.31b)

This is completed by the following results for the q terms:

q0
d(
n2

4 ) = 0

q0
dd(

n2

4 ) =
32

(n− 2)3n3

q0
dm(n

2

4 ) = 0

q0
dmm(n

2

4 ) =
16

(n− 2)3n3

(4.32)

We are now able to write down the approximated constraint (4.23) (by inserting (4.29)
in it) being correct for small m and small U :

8
(n−2)3n3 (t1 + t2) ε̃ 0 m2 + 32

(n−2)3n3 (t1 + t2) ε̃ 0 (d− n2

4 ) + U = 0 (4.33)

Now we easily get ∂d∗

∂m

∣∣
m=0

. We isolate d and differentiate w.r.t. m:

∂d∗

∂m

∣∣∣∣
m=0

= −8m|m=0 = 0 (4.34)

With that result the minimum m∗ is given in a very simple form (see (4.15) and the
following equations):

m∗ = − E0
m

E0
mm

= −
(t1 − t2) q0

m

(
−ε̃ 0 + ε̃ 0

F
n (n−2)
4(n−1)

)
(t1 + t2)

(
q0
mm ε̃

0 − q0
mε̃

0
F + 1

4
q0

ρ̃ 0

) (4.35)
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4.2 Magnitude of the orbital polarization

We want to learn something about the general behavior of m∗, first w.r.t. to the interaction
constant U and second w.r.t. to the anisotropy t1−t2. We keep in mind that the expression
(4.35) still depends on d in a complicated way (in the q-terms).

Interaction UUU

How does m∗ depend on U? Interaction appears in the expression for m∗ nowhere else
than in the q terms in form of the U -dependent double occupancy d. That is clear as the
GA yields not more than a constant approximation of the momentum space occupancy
inside and outside the U = 0 Fermi surface. The double occupancy d gets its dependence
on U from the constraint. The Taylor ansatz demands the evaluation of the latter at
m = 0, so that we can write the constraint within the approximation of small U in linear
order (4.33) for m = 0:

δ = d∗ − n2

4
= − (n− 2)3n3

32 (t1 + t2) ε̃ 0
U (4.36)

Expanding the minimum m∗ w.r.t. d is now equivalent to expanding it w.r.t. U using that
given relation. See Fig. 4.2 which compares this relation, i.e. the approximation of d∗,
with the exact value of d∗ (for the constraint corresponding to the semi-elliptic DOS).
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Figure 4.2: The exact result for d∗ compared with the the approximation (4.36).

Now we have to expand the q terms as these still are too complicated. We first consider
the order up to which we have to expand. It is clear that the orbital order effect that
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4 Analytical results within the Gutzwiller approximation

we are investigating will be at least of order U2, otherwise it would have emerged in the
Hartree-Fock approximation, too. We are not interested in higher orders, as we treat small
U anyway.

The question which then arises is why we did not expand to order U2 in (4.33), (4.36)
respectively. In fact we will see that m∗ ∝ δ2. It is clear that if we expanded to quadratic
order in (4.33) we would have gained a relation in (4.36) where δ ∝ AU2 +BU where the
prefactor B would be the same as in the linear order approximation we are making use of.
As m∗ ∝ δ2 all terms which include A would already be of order U4 that we do not want
to consider. Therefore it is clear that the linear approximation in (4.36) is enough.

Another aspect is the accuracy with which one has to evaluate the single q terms. If
the fraction which constitutes m∗ looks like this:

C δ2

D + E δ
=
C δ2

D

(
1 +O(δ)

)
, (4.37)

we can state that - as long as there is a constant term in the denominator - we will not
have to expand the other denominator terms to a higher than the constant order.

Keeping that in mind we look at the expansions of the q terms w.r.t. to δ, again at the
point (m = 0, d = n2

4 ). The result (4.35) tells us that q0
m is the only term which appears

in the enumerator and which we therefore have to expand up to second order. Evaluation
(and application of the former results q0

m(n
2

4 ) = 0, q0
md(

n2

4 ) = 0, q0
d(
n2

4 ) = 0) yields:

q0
m(d) = q0

m(n
2

4 ) + q0
md(

n2

4 ) δ + 1
2q

0
mdd(

n2

4 ) δ2 +O(δ3)
= 32(n−1)

(n−2)4n4 δ
2 +O(δ)3 .

(4.38)

And for the denominator terms:

q0(d) = q0(n
2

4 ) + q0
d(
n2

4 ) δ +O(δ2)
= 1 +O(δ)

(4.39a)

q0
mm(d) = q0

mm(n
2

4 ) + q0
mmd(

n2

4 ) δ +O(δ2)
= O(δ) .

(4.39b)

With the insertion of these results in (4.35) we get:

m∗ = −
(t1 − t2) 32(n−1)

(2−n)4n4 δ
2
(
−ε̃ 0 + ε̃ 0

F
n (n−2)
4(n−1)

)
(t1 + t2)

(
1
4

1
ρ̃ 0

) . (4.40)

Finally, (4.36) leads to the explicit expression for m∗ in the approximation of small U
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4.2 Magnitude of the orbital polarization

and small m:

m∗ =
(n− 1)(n− 2)2 n2

8
t1 − t2
t1 + t2

ρ̃ 0

(
ε̃ 0 − ε̃ 0

F

n (n− 2)
4(n− 1)

) (
U

(t1 + t2) ε̃ 0

)2

(4.41)

We keep in mind that t1, t2 and U are in units of energy and all quantities with a tilde
are dimensionless so that m∗ is unitless as it should be.

Anisotropy t1 − t2t1 − t2t1 − t2

One now can immediately give the exact dependence of the approximate m∗ on t1 and t2

by looking at (4.41):

m∗ ∝ t1 − t2
t1 + t2

. (4.42)

To consider it for a small difference t1 − t2 we set t1 ≡ 1 (without loss of generality) and
define β := t1 − t2 ≡ 1− t2. Now we can state that:

m∗ ∝ β

2− β
β small

=
1
2
β (1 +O(β)) . (4.43)

We see that the dependence on the anisotropy is linear in first order, i.e. the position of
the minimum – the strength of orbital order respectively – is proportional to the difference
in the hopping constants, if this difference is small.
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5 Numerical results within the

Gutzwiller approximation

In the following all analytic results will be looked at in terms of explicit numerical calcu-
lations for the elliptic DOS of the Bethe lattice:

ρ(ε) =

{
1

2πt2ν

√
4t2ν − (ε− Cν)2 for |ε− Cν | < 2tν

0 else .

5.1 Plots of the energy EEE

Fig. 5.1 shows the relation between the energy expectation value and the orbital polariza-
tion m for different values of U . Here the calculations were done exactly (without applying
any approximations) within the numerical accuracy. One sees that the polarization m∗

which corresponds to the minimum of the energy has a greater value for greater U .
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Figure 5.1: Parameters: n = 0.5, t1 = 1, t2 = 0.8
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5 Numerical results within the Gutzwiller approximation

The following tabular provides the numerical results for the location of the minima in
the plot and compares them with the results achieved using the Taylor expansion in m

(4.15) and those using the additional Taylor expansion (this time of the side condition)
in U (4.41). As it was expected, both approximations yield meaningful results for small
U . The steps between the values of U were chosen so that one can easily recognize the
proportionality m∗ ∝ U2. Below we will then see plots which show the dependence of m∗

on U more clearly.

m∗ Plot (numerically exact) approx. w.r.t. m approx. w.r.t. m and U

U = 0 0 0 0
U = 1

2 0.00001875 0.00001958 0.00001821
U = 1 0.00008200 0.00008263 0.00007384
U = 2 0.00034875 0.00034200 0.00028567

In plot Fig. 5.2 the unapproximated E is plotted versus m but this time for different
hopping constants t2. It therefore shows the dependence of E on t1 − t2. We state that
the orbital order effect gets stronger for a growing difference t1− t2. We will also compare
this result in Fig. 5.7.
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Figure 5.2: Parameters: n = 0.5, U = 1, t1 = 1
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5.1 Plots of the energy E

In Fig. 5.3 one sees a last plot for the unapproximated E. This time for different n.
One can state that the polarization is strongest in the interval [0.5, 0.8] (n = 0.65 yields
the greatest magnitude of m∗ in the plot). This is discussed in terms of the approximated
result in the context of Fig. 5.8.
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Figure 5.3: Parameters: U = 1, t1 = 1, t2 = 0.8

All these plots of the energy E confirm the assumptions that we indeed deal with a
minimum (and not with a maximum) at m = m∗ and that m∗ has a small magnitude.
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5 Numerical results within the Gutzwiller approximation

5.2 Plots of the orbital polarization m∗m∗m∗

The following pictures show the orbital polarization in its dependence on U . Plotted are
the numerically exact results and the results calculated within the two approximations.
There are three plots for n = 0.2, n = 0.5, n = 0.8. For all three values of n the exact
results show a similar behavior and are – at least for small U – well approximated.
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5.2 Plots of the orbital polarization m∗
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Figure 5.6: Parameters: n = 0.8, t1 = 1, t2 = 0.8

Fig. 5.7 now shows the dependence of m∗ on t2. We state once more that the position
of the minimum grows with a growing difference t1− t2 (which corresponds to a shrinking
t2).
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Figure 5.7: Parameters: n = 0.5, U = 1, t1 = 1
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5 Numerical results within the Gutzwiller approximation

In the last pictures we plot the result for m∗ (4.41) versus n for fixed U . The maximum
can be found at n = 0.5. Looking at Fig. 5.8 we state that for U = 1 the approximation is
rough (the exact results for m∗ correspond to those found in Fig. 5.3). In Fig. 5.9 one sees
that the approximation yields satisfying results for a smaller choice of U (the maximum
of the unapproximated values of m∗ then is close to n = 0.5).
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Figure 5.8: Parameters: t1 = 1, t1 = 0.8, U = 1
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6 Summary and concluding remarks

Summary We proved the existence of a new type of transition in the orbital order of
a spin-polarized two-band Hubbard model evaluated with the Gutzwiller approximation,
and showed that this effect occurs continuously for arbitrarily weak interactions. We
calculated an approximate expression for the magnitude of the orbital polarization and
gave its explicit dependence on t1 and t2. Its dependence on U was calculated to be
quadratic for small U . In the numerical part we confirmed these results. There it also
became obvious that the magnitude of the orbital polarization is indeed small. The general
approach to the problem with a Taylor expansion in m is therefore justified. Furthermore
we showed that the effect is not present in the Hartree Fock approximation. In the
Gutzwiller approximation there exist particular cases for which the effect is not going to
occur. We explicitly listed those cases.

Remark 1 In principle we can now use our results to calculate the magnitude of the
orbital polarization for lattices with arbitrary dimensions and geometries by inserting the
according DOS in our expressions. Also there is no reason why the adjustment of the model
system (see chapter 2) should constitute a restriction to generality, since the effect occurs
in an unadjusted system, too. The adjustment does not affect the determining equations
except for a constant. However we state that – compared to the initial polarization of
a system with t1 6= t2 – the transition we investigated is a small effect. If one wants to
increase the magnitude of the effect one sees that this effort is – w.r.t. an adjustment of
t1 and t2 – limited by max

t1,t2≥0

t1−t2
t1+t2

= lim
t2→0

t1−t2
t1+t2

= 1, see (4.41). One will therefore not be

able to construct a system which shows a strong orbital polarization by changing t1 and
t2. Perhaps this could be achieved with a special choice for the DOS, which remains to be
investigated.

Remark 2 We can a posteriori state that in our case the application of the GA is
justified, as we can confirm the assumption that we deal with a weak-coupling phenomenon.
In contrast to that, an investigation of the Stoner instability would not have produced
realistic results as one would have to consider too high values of U for that the GA could
be meaningfully applicable. Finally we state that it would also make sense to approach the
model system in perturbation theory. The results of this alternative would be interesting
to compare with our findings.
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